將x=my+2代入.消x整理.得: (m2+2)y2+4my-4=0 查看更多

 

題目列表(包括答案和解析)

已知的展開(kāi)式中第3項(xiàng)的系數(shù)與第5項(xiàng)的系數(shù)之比為

(1)求的值;(2)求展開(kāi)式中的常數(shù)項(xiàng).

【解析】(1)利用二項(xiàng)展開(kāi)式的通項(xiàng)公式求出展開(kāi)式的通項(xiàng),求出展開(kāi)式中第3項(xiàng)與第5項(xiàng)的系數(shù)列出方程求出n的值.

(2)將求出n的值代入通項(xiàng),令x的指數(shù)為0求出r的值,將r的值代入通項(xiàng)求出展開(kāi)式的常數(shù)項(xiàng).

 

查看答案和解析>>

已知點(diǎn)為圓上的動(dòng)點(diǎn),且不在軸上,軸,垂足為,線(xiàn)段中點(diǎn)的軌跡為曲線(xiàn),過(guò)定點(diǎn)任作一條與軸不垂直的直線(xiàn),它與曲線(xiàn)交于、兩點(diǎn)。

(I)求曲線(xiàn)的方程;

(II)試證明:在軸上存在定點(diǎn),使得總能被軸平分

【解析】第一問(wèn)中設(shè)為曲線(xiàn)上的任意一點(diǎn),則點(diǎn)在圓上,

,曲線(xiàn)的方程為

第二問(wèn)中,設(shè)點(diǎn)的坐標(biāo)為,直線(xiàn)的方程為,  ………………3分   

代入曲線(xiàn)的方程,可得 

,∴

確定結(jié)論直線(xiàn)與曲線(xiàn)總有兩個(gè)公共點(diǎn).

然后設(shè)點(diǎn),的坐標(biāo)分別, ,則,  

要使軸平分,只要得到。

(1)設(shè)為曲線(xiàn)上的任意一點(diǎn),則點(diǎn)在圓上,

,曲線(xiàn)的方程為.  ………………2分       

(2)設(shè)點(diǎn)的坐標(biāo)為,直線(xiàn)的方程為,  ………………3分   

代入曲線(xiàn)的方程,可得 ,……5分            

,∴,

∴直線(xiàn)與曲線(xiàn)總有兩個(gè)公共點(diǎn).(也可根據(jù)點(diǎn)M在橢圓的內(nèi)部得到此結(jié)論)

………………6分

設(shè)點(diǎn),的坐標(biāo)分別, ,則,   

要使軸平分,只要,            ………………9分

,,        ………………10分

也就是,

,即只要  ………………12分  

當(dāng)時(shí),(*)對(duì)任意的s都成立,從而總能被軸平分.

所以在x軸上存在定點(diǎn),使得總能被軸平分

 

查看答案和解析>>

長(zhǎng)方體ABCDA1B1C1D1中,ABBC=2,D1D=3,點(diǎn)MB1C1的中點(diǎn),點(diǎn)NAB的中點(diǎn).建立如圖所示的空間直角坐標(biāo)系.

(1)寫(xiě)出點(diǎn)DN,M的坐標(biāo);

(2)求線(xiàn)段MD,MN的長(zhǎng)度.

[分析] (1)D是原點(diǎn),先寫(xiě)出A,B,B1,C1的坐標(biāo),再由中點(diǎn)坐標(biāo)公式得MN的坐標(biāo);(2)代入空間中兩點(diǎn)間距離公式即可.

查看答案和解析>>

圓x2+y2-2x+my-2=0關(guān)于拋物線(xiàn)x2=4y的準(zhǔn)線(xiàn)對(duì)稱(chēng),則m=
2
2

查看答案和解析>>

圓x2+y2-2x+my-2=0關(guān)于拋物線(xiàn)x2=4y的準(zhǔn)線(xiàn)對(duì)稱(chēng),則m=   

查看答案和解析>>


同步練習(xí)冊(cè)答案