由題得:. 2分 查看更多

 

題目列表(包括答案和解析)

(本題滿分13分)本題共有2個(gè)小題,第一個(gè)小題滿分5分,第2個(gè)小題滿分8分。

已知數(shù)列的前項(xiàng)和為,且

(1)證明:是等比數(shù)列;

(2)求數(shù)列的通項(xiàng)公式,并求出n為何值時(shí),取得最小值,并說明理由。

   (2)=  n=15取得最小值

查看答案和解析>>

(本題滿分13分)本題共有2個(gè)小題,第一個(gè)小題滿分5分,第2個(gè)小題滿分8分。

已知數(shù)列的前項(xiàng)和為,且,

(1)證明:是等比數(shù)列;

(2)求數(shù)列的通項(xiàng)公式,并求出n為何值時(shí),取得最小值,并說明理由。

   (2)=  n=15取得最小值

查看答案和解析>>

(本題滿分18分) 本題共有3個(gè)小題,第1小題滿分4分,第2小題滿分6分. 第3小題滿分8分.

(文)對(duì)于數(shù)列,從中選取若干項(xiàng),不改變它們?cè)谠瓉頂?shù)列中的先后次序,得到的數(shù)列稱為是原來數(shù)列的一個(gè)子數(shù)列. 某同學(xué)在學(xué)習(xí)了這一個(gè)概念之后,打算研究首項(xiàng)為,公差為的無窮等差數(shù)列的子數(shù)列問題,為此,他取了其中第一項(xiàng),第三項(xiàng)和第五項(xiàng).

(1) 若成等比數(shù)列,求的值;

(2) 在, 的無窮等差數(shù)列中,是否存在無窮子數(shù)列,使得數(shù)列為等比數(shù)列?若存在,請(qǐng)給出數(shù)列的通項(xiàng)公式并證明;若不存在,說明理由;

(3) 他在研究過程中猜想了一個(gè)命題:“對(duì)于首項(xiàng)為正整數(shù),公比為正整數(shù)()的無窮等比數(shù)  列,總可以找到一個(gè)子數(shù)列,使得構(gòu)成等差數(shù)列”. 于是,他在數(shù)列中任取三項(xiàng),由的大小關(guān)系去判斷該命題是否正確. 他將得到什么結(jié)論?

 

查看答案和解析>>

(本題滿分14分) 設(shè){an}是由正數(shù)組成的等差數(shù)列,Sn是其前n項(xiàng)和

(1)若,求的值;

(2)若互不相等正整數(shù)p,q,m,使得p+q=2m,證明:不等式成立;

(3)是否存在常數(shù)k和等差數(shù)列{an},使恒成立(n∈N*),若存在,試求出常數(shù)k和數(shù)列{an}的通項(xiàng)公式;若不存在,請(qǐng)說明理由。

 

查看答案和解析>>

(本題滿分13分)

對(duì)于給定數(shù)列,如果存在實(shí)常數(shù)使得對(duì)于任意都成立,我們稱數(shù)列是 “M類數(shù)列”.

(1)若,,數(shù)列、是否為“M類數(shù)列”?若是,指出它對(duì)應(yīng)的實(shí)常數(shù),若不是,請(qǐng)說明理由;

(2)證明:若數(shù)列是“M類數(shù)列”,則數(shù)列也是“M類數(shù)列”;

(3)若數(shù)列滿足,為常數(shù).求數(shù)列項(xiàng)的和.

 

查看答案和解析>>


同步練習(xí)冊(cè)答案