當(dāng)k>1時(shí).當(dāng)k=1時(shí).[m.n]不存在. 查看更多

 

題目列表(包括答案和解析)

數(shù)列{an},{bn}(n=1,2,3,…)由下列條件確定:①a1<0,b1>0;②當(dāng)k≥2時(shí),ak與bk滿足:ak-1+bk-1≥0時(shí),ak=ak-1,bk=
ak-1+bk-1
2
;當(dāng)ak-1+bk-1<0時(shí),ak=
ak-1+bk-1
2
,bk=bk-1
(Ⅰ)若a1=-1,b1=1,,求a2,a3,a4,并猜想數(shù)列{an}的通項(xiàng)公式(不需要證明);
(Ⅱ)在數(shù)列{bn}中,若b1>b2>…bs(s≥3,且s∈N*),試用a1,b1表示bk,k∈{1,2,…,s};
(Ⅲ)在(Ⅰ)的條件下,設(shè)數(shù)列{cn}(n∈N*)滿足c1=
1
2
,cn≠0,cn+1=-
22-m
mam
cn2+cn
 (其中m為給定的不小于2的整數(shù)),求證:當(dāng)n≤m時(shí),恒有cn<1.

查看答案和解析>>

數(shù)列{an},{bn}(n=1,2,3,…)由下列條件確定:①a1<0,b1>0;②當(dāng)k≥2時(shí),ak與bk滿足:ak-1+bk-1≥0時(shí),ak=ak-1,bk=;當(dāng)ak-1+bk-1<0時(shí),ak=,bk=bk-1
(Ⅰ)若a1=-1,b1=1,,求a2,a3,a4,并猜想數(shù)列{an}的通項(xiàng)公式(不需要證明);
(Ⅱ)在數(shù)列{bn}中,若b1>b2>…bs(s≥3,且s∈N*),試用a1,b1表示bk,k∈{1,2,…,s};
(Ⅲ)在(Ⅰ)的條件下,設(shè)數(shù)列{cn}(n∈N*)滿足c1=,cn≠0,cn+1=- (其中m為給定的不小于2的整數(shù)),求證:當(dāng)n≤m時(shí),恒有cn<1.

查看答案和解析>>

數(shù)列{an},{bn}(n=1,2,3,…)由下列條件確定:①a1<0,b1>0;②當(dāng)k≥2時(shí),ak與bk滿足:ak-1+bk-1≥0時(shí),ak=ak-1,bk=;當(dāng)ak-1+bk-1<0時(shí),ak=,bk=bk-1
(Ⅰ)若a1=-1,b1=1,,求a2,a3,a4,并猜想數(shù)列{an}的通項(xiàng)公式(不需要證明);
(Ⅱ)在數(shù)列{bn}中,若b1>b2>…bs(s≥3,且s∈N*),試用a1,b1表示bk,k∈{1,2,…,s};
(Ⅲ)在(Ⅰ)的條件下,設(shè)數(shù)列{cn}(n∈N*)滿足c1=,cn≠0,cn+1=- (其中m為給定的不小于2的整數(shù)),求證:當(dāng)n≤m時(shí),恒有cn<1.

查看答案和解析>>

有n(n≥3,n∈N*)個(gè)首項(xiàng)為1,項(xiàng)數(shù)為n的等差數(shù)列,設(shè)其第m(m≤n,m∈N*)個(gè)等差數(shù)列的第k項(xiàng)為amk(k=1,2,3,…,n),且公差為dm.若d1=1,d2=3,a1n,a2n,a3n,…,ann也成等差數(shù)列.
(Ⅰ)求dm(3≤m≤n)關(guān)于m的表達(dá)式;
(Ⅱ)將數(shù)列dm分組如下:(d1),(d2,d3,d4),(d5,d6,d7,d8,d9)…,
(每組數(shù)的個(gè)數(shù)組成等差數(shù)列),設(shè)前m組中所有數(shù)之和為(cm4(cm>0),求數(shù)列{2cmdm}的前n項(xiàng)和Sn
(Ⅲ)設(shè)N是不超過20的正整數(shù),當(dāng)n>N時(shí),對于(Ⅱ)中的Sn,求使得不等式數(shù)學(xué)公式成立的所有N的值.

查看答案和解析>>

數(shù)列{an},{bn}(n=1,2,3,…)由下列條件確定:①a1<0,b1>0;②當(dāng)k≥2時(shí),ak與bk滿足:ak-1+bk-1≥0時(shí),ak=ak-1,bk=數(shù)學(xué)公式;當(dāng)ak-1+bk-1<0時(shí),ak=數(shù)學(xué)公式,bk=bk-1
(Ⅰ)若a1=-1,b1=1,,求a2,a3,a4,并猜想數(shù)列{an}的通項(xiàng)公式(不需要證明);
(Ⅱ)在數(shù)列{bn}中,若b1>b2>…bs(s≥3,且s∈N*),試用a1,b1表示bk,k∈{1,2,…,s};
(Ⅲ)在(Ⅰ)的條件下,設(shè)數(shù)列{cn}(n∈N*)滿足c1=數(shù)學(xué)公式,cn≠0,cn+1=-數(shù)學(xué)公式 (其中m為給定的不小于2的整數(shù)),求證:當(dāng)n≤m時(shí),恒有cn<1.

查看答案和解析>>


同步練習(xí)冊答案