為確保信息安全.信息需加密傳輸.發(fā)送方由明文密文.接收方由密文明文.已知加密規(guī)則為:明文對(duì)應(yīng)密文例如.明文對(duì)應(yīng)密文當(dāng)接收方收到密文時(shí).則解密得到的明文為A. B. C. D. 查看更多

 

題目列表(包括答案和解析)

9、為確保信息安全,信息需加密傳輸,發(fā)送方由明文→密文(加密),接收方由密文→明文(解密),已知加密規(guī)則如圖所示,例如,明文1,2,3,4對(duì)應(yīng)密文5,7,18,16.當(dāng)接收方收到密文14,9,23,28時(shí),則解密得到的明文為
6,4,1,7

查看答案和解析>>

為確保信息安全,信息需加密傳輸,發(fā)送方由明文→密文(加密),接收方由密文→明文(解密),已知加密規(guī)則為:明文a,b,c,d對(duì)應(yīng)密文a+2b,2b+c,2c+3d,4d,例如,明文1,2,3,4對(duì)應(yīng)密文5,7,18,16.當(dāng)接收方收到密文14,9,23,28時(shí),則解密得到的明文為( 。
A、4,6,1,7B、7,6,1,4C、6,4,1,7D、1,6,4,7

查看答案和解析>>

23、為確保信息安全,信息需加密傳輸,發(fā)送方由明文→密文(加密),接收方由密文→明文(解密),已知加密規(guī)則如圖所示,例如,明文1,2,3,4對(duì)應(yīng)密文5,7,18,16. 當(dāng)接收方收到密文14,9,23,28時(shí),則解密得到的明文為
6,4,1,7

查看答案和解析>>

為確保信息安全,信息需加密傳輸,發(fā)送方由明文→密文(加密),接受方由密文→明文(解密),已知加密規(guī)則為:明文a,b,c,d對(duì)應(yīng)密文a+2b,2b+c,2c+3d,4d.例如明文1,2,3,4對(duì)應(yīng)加密文5,7,18,16,當(dāng)接受方收到密文14,9,23,28時(shí),則解密得明文為(  )

查看答案和解析>>

為確保信息安全,信息需加密傳輸,發(fā)送方由明文→密文(加密),接收方由密文→明文(解密),已知加密規(guī)則為:明文a,b,c,d對(duì)應(yīng)密文a+2b,2b+c,2c+3d,4d,例如,明文1,2,3,4對(duì)應(yīng)密文5,7,18,16.當(dāng)接收方收到密文14,9,23,28時(shí),則解密得到的明文為
 

查看答案和解析>>

ABAACBBCDB

    155  

         0

17、解:(Ⅰ)

         

(Ⅱ)

     

18、解: (I) 由于在閉區(qū)間[0,7]上,只有,故.若是奇函數(shù),則,矛盾.所以,不是奇函數(shù).

, 從而知函數(shù)是以為周期的函數(shù).

是偶函數(shù),則.又,從而

由于對(duì)任意的(3,7]上,,又函數(shù)的圖象的關(guān)于對(duì)稱,所以對(duì)區(qū)間[7,11)上的任意均有.所以,,這與前面的結(jié)論矛盾.

所以,函數(shù)是非奇非偶函數(shù).

 (II) 由第(I)小題的解答,我們知道在區(qū)間(0,10)有且只有兩個(gè)解,并且.由于函數(shù)是以為周期的函數(shù),故.所以在區(qū)間[-2000,2000]上,方程共有個(gè)解.

在區(qū)間[2000,2010]上,方程有且只有兩個(gè)解.因?yàn)?/p>

,

所以,在區(qū)間[2000,2005]上,方程有且只有兩個(gè)解.

在區(qū)間[-2010,-2000]上,方程有且只有兩個(gè)解.因?yàn)?/p>

,

所以,在區(qū)間[-2005,-2000]上,方程無解.

  綜上所述,方程在[-2005,2005]上共有802個(gè)解.

19、[解](1)

 

 

 

 

 

 

 

 

 

 

            

      (2)方程的解分別是,由于上單調(diào)遞減,在上單調(diào)遞增,因此

.                        

    由于.                         

  (3)[解法一] 當(dāng)時(shí),.

          

              

               ,                              . 又,

       ①  當(dāng),即時(shí),取,

       .

       ,

       則.                                                

       ②  當(dāng),即時(shí),取,    .

    由 ①、②可知,當(dāng)時(shí),,.

因此,在區(qū)間上,的圖像位于函數(shù)圖像的上方. 

    [解法二] 當(dāng)時(shí),.

,

    令 ,解得 ,               

在區(qū)間上,當(dāng)時(shí),的圖像與函數(shù)的圖像只交于一點(diǎn); 當(dāng)時(shí),的圖像與函數(shù)的圖像沒有交點(diǎn).    

如圖可知,由于直線過點(diǎn),當(dāng)時(shí),直線是由直線繞點(diǎn)逆時(shí)針方向旋轉(zhuǎn)得到. 因此,在區(qū)間上,的圖像位于函數(shù)圖像的上方.

20、解:(Ⅰ)設(shè)函數(shù)的圖象上任意一點(diǎn)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為,則

∵點(diǎn)在函數(shù)的圖象上

(Ⅱ)由

當(dāng)時(shí),,此時(shí)不等式無解

當(dāng)時(shí),,解得

因此,原不等式的解集為

(Ⅲ)

?)

?)

21、解:(I)∵

∴要使有意義,必須,即

,且……①    ∴的取值范圍是。

由①得:,∴,

(II)由題意知即為函數(shù),的最大值,

∵直線是拋物線的對(duì)稱軸,∴可分以下幾種情況進(jìn)行討論:

(1)當(dāng)時(shí),函數(shù),的圖象是開口向上的拋物線的一段,

上單調(diào)遞增,故

(2)當(dāng)時(shí),,,有=2;

(3)當(dāng)時(shí),,函數(shù),的圖象是開口向下的拋物線的一段,

時(shí),,

時(shí),,

時(shí),。

綜上所述,有=。

(III)當(dāng)時(shí),

      當(dāng)時(shí),,,∴,

,故當(dāng)時(shí),;

當(dāng)時(shí),,由知:,故;

當(dāng)時(shí),,故,從而有,

要使,必須有,即,

此時(shí),。

綜上所述,滿足的所有實(shí)數(shù)a為:。

                                     

 


同步練習(xí)冊(cè)答案