當(dāng)?=0時三角形的頂點M的坐標(biāo)是(,±1)和(-,±1) 10分 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)為奇函數(shù),,當(dāng).若為正的常數(shù),且對任意實數(shù),函數(shù)只有一個零點,當(dāng) =0時,的零點滿足,則點()形成的平面區(qū)域的面積為(     )

(A)   (B)   (C)    (D)

 

查看答案和解析>>

已知A、B是雙曲線x2-=1上的兩點,O是坐標(biāo)原點,且滿足·=0, +(1-α) .

(1)當(dāng)α=,且=(2,)時,求P點的坐標(biāo);

(2)當(dāng)·=0時,求||的值;

(3)求|AB|的最小值.

查看答案和解析>>

函數(shù)y=f (x )=-x3+ax2+b(a,b∈R ),
(Ⅰ)要使y=f(x)在(0,1)上單調(diào)遞增,求a的取值范圍;
(Ⅱ)當(dāng)a>0時,若函數(shù)滿足y極小值=1,y極大值=,求函數(shù)y=f(x)的解析式;
(Ⅲ)若x∈[0,1]時,y=f(x)圖象上任意一點處的切線傾斜角為θ,求當(dāng)0≤θ≤時a的取值范圍。

查看答案和解析>>

如圖放置的等腰直角三角形ABC薄片(∠ACB=90°,AC=2)沿x軸滾動,設(shè)頂點A(x,y)的軌跡方程是y=f(x),當(dāng)[0,]時y=f(x)= _____________

 

查看答案和解析>>

已知函數(shù)的圖象過坐標(biāo)原點O,且在點處的切線的斜率是.

(Ⅰ)求實數(shù)的值; 

(Ⅱ)求在區(qū)間上的最大值;

(Ⅲ)對任意給定的正實數(shù),曲線上是否存在兩點P、Q,使得是以O(shè)為直角頂點的直角三角形,且此三角形斜邊中點在軸上?說明理由.

【解析】第一問當(dāng)時,,則

依題意得:,即    解得

第二問當(dāng)時,,令,結(jié)合導(dǎo)數(shù)和函數(shù)之間的關(guān)系得到單調(diào)性的判定,得到極值和最值

第三問假設(shè)曲線上存在兩點P、Q滿足題設(shè)要求,則點P、Q只能在軸兩側(cè)。

不妨設(shè),則,顯然

是以O(shè)為直角頂點的直角三角形,∴

    (*)若方程(*)有解,存在滿足題設(shè)要求的兩點P、Q;

若方程(*)無解,不存在滿足題設(shè)要求的兩點P、Q.

(Ⅰ)當(dāng)時,,則。

依題意得:,即    解得

(Ⅱ)由(Ⅰ)知,

①當(dāng)時,,令

當(dāng)變化時,的變化情況如下表:

0

0

+

0

單調(diào)遞減

極小值

單調(diào)遞增

極大值

單調(diào)遞減

,。∴上的最大值為2.

②當(dāng)時, .當(dāng)時, ,最大值為0;

當(dāng)時, 上單調(diào)遞增!最大值為

綜上,當(dāng)時,即時,在區(qū)間上的最大值為2;

當(dāng)時,即時,在區(qū)間上的最大值為。

(Ⅲ)假設(shè)曲線上存在兩點P、Q滿足題設(shè)要求,則點P、Q只能在軸兩側(cè)。

不妨設(shè),則,顯然

是以O(shè)為直角頂點的直角三角形,∴

    (*)若方程(*)有解,存在滿足題設(shè)要求的兩點P、Q;

若方程(*)無解,不存在滿足題設(shè)要求的兩點P、Q.

,則代入(*)式得:

,而此方程無解,因此。此時

代入(*)式得:    即   (**)

 ,則

上單調(diào)遞增,  ∵     ∴,∴的取值范圍是。

∴對于,方程(**)總有解,即方程(*)總有解。

因此,對任意給定的正實數(shù),曲線上存在兩點P、Q,使得是以O(shè)為直角頂點的直角三角形,且此三角形斜邊中點在軸上

 

查看答案和解析>>


同步練習(xí)冊答案