A.40 B. C. D. 查看更多

 

題目列表(包括答案和解析)

,則                            (   )

A.42        B.          C.             D.40

查看答案和解析>>

精英家教網(wǎng)A.選修4-1:幾何證明選講
銳角三角形ABC內(nèi)接于⊙O,∠ABC=60?,∠BAC=40?,作OE⊥AB交劣弧
AB
于點(diǎn)E,連接EC,求∠OEC.
B.選修4-2:矩陣與變換
曲線(xiàn)C1=x2+2y2=1在矩陣M=[
12
01
]的作用下變換為曲線(xiàn)C2,求C2的方程.
C.選修4-4:坐標(biāo)系與參數(shù)方程
P為曲線(xiàn)C1
x=1+cosθ
y=sinθ
(θ為參數(shù))上一點(diǎn),求它到直線(xiàn)C2
x=1+2t
y=2
(t為參數(shù))距離的最小值.
D.選修4-5:不等式選講
設(shè)n∈N*,求證:
C
1
n
+
C
2
N
+L+
C
N
N
n(2n-1)

查看答案和解析>>

A.選修4-1:幾何證明選講
銳角三角形ABC內(nèi)接于⊙O,∠ABC=60?,∠BAC=40?,作OE⊥AB交劣弧于點(diǎn)E,連接EC,求∠OEC.
B.選修4-2:矩陣與變換
曲線(xiàn)C1=x2+2y2=1在矩陣M=[]的作用下變換為曲線(xiàn)C2,求C2的方程.
C.選修4-4:坐標(biāo)系與參數(shù)方程
P為曲線(xiàn)C1(θ為參數(shù))上一點(diǎn),求它到直線(xiàn)C2(t為參數(shù))距離的最小值.
D.選修4-5:不等式選講
設(shè)n∈N*,求證:++L+

查看答案和解析>>

設(shè)a=40.9,b=80.48,c=()-1.5,則

[  ]
A.

c>a>b

B.

b>a>c

C.

a>b>c

D.

a>c>b

查看答案和解析>>

將A、B、C、D、E排成一列,要求A、B、C在排列中順序?yàn)椤癆、B、C”或“C,B、A”(可以不相鄰)這樣的排列數(shù)有  (   )

A.12種            B.20種             C.40種          D.60種

 

查看答案和解析>>

 

一、ACBCD   DDCAB

二、11。       12。12         13。

 14。

 

 15。②③⑤

三、16解:(I)

          。。。。。。。。。。。。。。。。。。。 4分

         。。。。。。。。。。。。。。。。。。。 6分

   (II)

       。。。。。。。。。。。。。。。。。。。 8分

       。。。。。。。。。。。。。。。。。。。. 9分

 。。。。。。。。。。。。。。。。。。。. 12分

       當(dāng)   。。。。。。。。。。。。。。  13分

 

17解(1)連接B1C,交BC1于點(diǎn)O,則O為B1C的中點(diǎn),

        ∵D為AC中點(diǎn)    ∴OD∥B1A。。。。。。。。。。。。。。。。。。。。。 4分

        又B1A平面BDC1,OD平面BDC1

         ∴B1A∥平面BDC1   。。。。。。。。。。。。。。。。。。。。。。。。。。。6分

  (2)∵AA1⊥面ABC,BC⊥AC,AA1∥CC1

       ∴CC1⊥面ABC   則BC⊥平面AC1,CC1⊥AC

      如圖以C為坐標(biāo)原點(diǎn),CA所在直線(xiàn)為X軸,CB所在直線(xiàn)為Y軸,所在直線(xiàn)為軸建立空間直角坐標(biāo)系 則C1(0,0,3) B(0,2,0) D(1,0,0) C(0,0,0) 。。。。。。。。。。。。。。。。。 8分

 ∴設(shè)平面的法向量為  由

,取,  則。。。。。。。。。10分

 又平面BDC的法向量為。。。。。。。。。。。。。。。。。。。 11分

       cos

∴二面角C1―BD―C的余弦值為。。。。。。。。。13分

 

18解:(I)設(shè)周五有語(yǔ)文、數(shù)學(xué)、外語(yǔ)三科作業(yè)分別為事件A1、A2、A3周五沒(méi)有語(yǔ)文、數(shù)學(xué)、外語(yǔ)三科作業(yè)為事件A,則由已知表格得

、、。。。。。。。。。。。。2分

。。。。。。。。。。4分

(II)設(shè)一周內(nèi)有數(shù)學(xué)作業(yè)的天數(shù)為,則

      

      

      

      

      

。。。。。。。。。。。。。。。。。。。。。10分

  所以隨機(jī)變量的概率分布列如下:

0

1

2

3

4

5

P

   故 。。。。。。。。。。13分

 

19解:(Ⅰ)由題意,可設(shè)拋物線(xiàn)方程為.

,得.拋物線(xiàn)的焦點(diǎn)為,.

拋物線(xiàn)D的方程為.  。。。。。。。。。。。。。。。。。。。。。。。4分

(Ⅱ)設(shè)A由于O為PQ之中點(diǎn),故當(dāng)軸時(shí)由拋物線(xiàn)的對(duì)稱(chēng)性知 。。。。。。。。。。。。。。。。。。

當(dāng)不垂直軸時(shí),設(shè):,

,

,,

                …

                                         

(Ⅲ)設(shè)存在直線(xiàn)滿(mǎn)足題意,則圓心,過(guò)M作直線(xiàn)的垂線(xiàn),

垂足為E, 設(shè)直線(xiàn)與圓交于點(diǎn),可得,

即  =

=

==                   

當(dāng)時(shí),,此時(shí)直線(xiàn)被以AP為直徑的圓截得的弦長(zhǎng)恒為定值.…12分

因此存在直線(xiàn)滿(mǎn)足題意.                                  ……13分

 

 

20解:(Ⅰ) ,

. 。。。。。。。。。。。。。。。。。。2分

當(dāng)時(shí),. 。。。。。。。。。。。。。。。。。。。。。。。。。。3分

當(dāng)時(shí),,此時(shí)函數(shù)遞減; 

當(dāng)時(shí),,此時(shí)函數(shù)遞增;

∴當(dāng)時(shí),取極小值,其極小值為. 。。。。。。。。。。。。。。。。。。6分

(Ⅱ)解法一:由(Ⅰ)可知函數(shù)的圖像在處有公共點(diǎn),因此若存在的隔離直線(xiàn),則該直線(xiàn)過(guò)這個(gè)公共點(diǎn). 。。。。。。。。。。。。。。。。。。。。。。。7分

設(shè)隔離直線(xiàn)的斜率為,則直線(xiàn)方程為,

即     .。。。。。。。。。。。。。。。。。。。。。。。。。。。。。8分

,可得當(dāng)時(shí)恒成立.

, ,得.。。。。。。。。。。。。。。。。。10分

下面證明當(dāng)時(shí)恒成立.

,則

,  。。。。。。。。。。。。。。。。。。。。。。11分

當(dāng)時(shí),

  當(dāng)時(shí),,此時(shí)函數(shù)遞增;

當(dāng)時(shí),,此時(shí)函數(shù)遞減;

∴  當(dāng)時(shí),取極大值,也是最大值,其最大值為.   

 

從而,即恒成立.。。。。。。。13分             

∴  函數(shù)存在唯一的隔離直線(xiàn).。。。。。。。。。。。。。。。14分

解法二: 由(Ⅰ)可知當(dāng)時(shí), (當(dāng)且當(dāng)時(shí)取等號(hào)) .。。。。。7分

若存在的隔離直線(xiàn),則存在實(shí)常數(shù),使得

恒成立,

,則

,即. 。。。。。。。。。。。。。。。。。。。。。。。。8分

后面解題步驟同解法一.

 

21(。┙猓篜Q=6ec8aac122bd4f6e

       PQ矩陣表示的變換T:6ec8aac122bd4f6e滿(mǎn)足條件

         6ec8aac122bd4f6e.   所以6ec8aac122bd4f6e。。。。。。。。。。。。。。。。。。(3分)

直線(xiàn)6ec8aac122bd4f6e任取點(diǎn)6ec8aac122bd4f6e,則點(diǎn)6ec8aac122bd4f6e在直線(xiàn)6ec8aac122bd4f6e上,

6ec8aac122bd4f6e,又6ec8aac122bd4f6e,得6ec8aac122bd4f6e   所以6ec8aac122bd4f6e 。。。。。(7分)

(2) (Ⅰ)曲線(xiàn)C的極坐標(biāo)方程是化為直角坐標(biāo)方程為:

    直線(xiàn)的直角坐標(biāo)方程為:。。。。。。。。。3分

(Ⅱ)(法一)由(1)知:圓心的坐標(biāo)為(2,0),圓的半徑R=2,

圓心到直線(xiàn)l的距離

 

    。。。。。。。。。。。。。。。。。。。。。。。7分

 

 

(法二)把是參數(shù))代入方程,

,

.

     

  。。。。。。。。。。。。。。。。。。。。。。。。。7分

 

(3) 解:(Ⅰ)

 

函數(shù)如圖所示。。。。。。。。。。。。。3分

 

(Ⅱ)由題設(shè)知:

如圖,在同一坐標(biāo)系中作出函數(shù)的圖象

(如圖所示) 又解集為.

    由題設(shè)知,當(dāng)時(shí),

得: 。。。。。。。。。。。。。。。。7分

 

 

 


同步練習(xí)冊(cè)答案