(I)求通項(xiàng)公式的表達(dá)式: 查看更多

 

題目列表(包括答案和解析)

已知二次函數(shù)同時(shí)滿足:①不等式的解集有且只有一個(gè)元素;②在定義域內(nèi)存在,使得不等式成立。設(shè)數(shù)列的前n項(xiàng)和。

(1)求函數(shù)的表達(dá)式;

(2)求數(shù)列的通項(xiàng)公式;

(3)設(shè)各項(xiàng)均不為零的數(shù)列中,所有滿足的整數(shù)i的個(gè)數(shù)稱為這個(gè)數(shù)列的變號數(shù)。令n為正整數(shù)),求數(shù)列的變號數(shù)。

查看答案和解析>>

設(shè)函數(shù),數(shù)列{an}滿足
(I)求數(shù)列{an}的通項(xiàng)公式;
(II)設(shè)Tn=a1a2-a2a3+a3a4-a4a5+…+(-1)n-1anan+1,若Tn≥tn2對n∈N*恒成立,求實(shí)數(shù)t的取值范圍;
(III)在數(shù)列{an}中是否存在這樣一些項(xiàng):,這些項(xiàng)能夠構(gòu)成以a1為首項(xiàng),q(0<q<5,q∈N*)為公比的等比數(shù)列,k∈N*.若存在,寫出nk關(guān)于k的表達(dá)式;若不存在,說明理由.

查看答案和解析>>

設(shè)函數(shù),數(shù)列{an}滿足
(I)求數(shù)列{an}的通項(xiàng)公式;
(II)設(shè)Tn=a1a2-a2a3+a3a4-a4a5+…+(-1)n-1anan+1,若Tn≥tn2對n∈N*恒成立,求實(shí)數(shù)t的取值范圍;
(III)在數(shù)列{an}中是否存在這樣一些項(xiàng):,這些項(xiàng)能夠構(gòu)成以a1為首項(xiàng),q(0<q<5,q∈N*)為公比的等比數(shù)列,k∈N*.若存在,寫出nk關(guān)于k的表達(dá)式;若不存在,說明理由.

查看答案和解析>>

(14分)已知定義在上的單調(diào)函數(shù),當(dāng)時(shí),,且對任意的實(shí)數(shù),有設(shè)數(shù)列滿足,且

 

   (I)求通項(xiàng)公式的表達(dá)式:

   (Ⅱ)令,試比較的大小,并加以證明。

查看答案和解析>>

(本小題滿分16分)

已知二次函數(shù)同時(shí)滿足:①不等式的解集有且只有一個(gè)元素;②在定義域內(nèi)存在,使得不等式成立。設(shè)數(shù)列的前n項(xiàng)和。

  (1)求函數(shù)的表達(dá)式;  (2)求數(shù)列的通項(xiàng)公式;(3)設(shè)各項(xiàng)均不為零的數(shù)列中,所有滿足的整數(shù)I的個(gè)數(shù)稱為這個(gè)數(shù)列的變號數(shù)。令n為正整數(shù)),求數(shù)列的變號數(shù).

查看答案和解析>>

一、選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。

題號

1

2

3

4

5

6

7

8

9

10

答案

B

B

D

D

C

A

C

B

A

C

二、填空題:本大題共6小題,每小題4分,共24分。把答案填在題中橫線上。

11.13     12.       13.2     14.4       15.      16.1005

三、解答題:本大題共6小題,共78分。解答應(yīng)寫出文字說明,證明過程或演算步驟。

17.(本小題滿分12分)

解(I)

      

  (Ⅱ)由

       

18.(本小題滿分12分)

解(I)記事件A;射手甲剩下3顆子彈,

      

   (Ⅱ)記事件甲命中1次10環(huán),乙命中兩次10環(huán),事件;甲命中2次10環(huán),乙命中1次10環(huán),則四次射擊中恰有三次命中10環(huán)為事件

(Ⅲ)的取值分別為16,17,18,19,20,

     

19.(本小題滿分12分)

解法一:

(I)設(shè)的中點(diǎn),連結(jié)

  的中點(diǎn),的中點(diǎn),

==(//)==(//)

==(//)

   

(Ⅱ)

 

(Ⅲ)過點(diǎn)作垂線,垂足為,連結(jié)

   

解法二:

分別以所在直線為坐標(biāo)軸建立空間直角坐標(biāo)系,

(I)

     

 (Ⅱ)設(shè)平面的一個(gè)法向量為

      

(Ⅲ)平面的一個(gè)法向量為

     

 

20.(本小題滿分12分)

   (1)由

        切線的斜率切點(diǎn)坐標(biāo)(2,5+

        所求切線方程為

   (2)若函數(shù)為上單調(diào)增函數(shù),

        則上恒成立,即不等式上恒成立

        也即上恒成立。

        令上述問題等價(jià)于

        而為在上的減函數(shù),

        則于是為所求

21.(本小題滿分14分)

解(I)設(shè)

       

 (Ⅱ)(1)當(dāng)直線的斜率不存在時(shí),方程為

      

      

  (2)當(dāng)直線的斜率存在時(shí),設(shè)直線的方程為,

       設(shè),

      ,得

      

      

      

              

22.(本小題滿分14分)

解(I)由題意,令

      

 (Ⅱ)

      

  (1)當(dāng)時(shí),成立:

  (2)假設(shè)當(dāng)時(shí)命題成立,即

       當(dāng)時(shí),

      

 


同步練習(xí)冊答案