題目列表(包括答案和解析)
y2 |
a2 |
x2 |
b2 |
a2 |
|OM|2 |
b2 |
|ON|2 |
25 |
16 |
(本題16分,其中第(1)小題8分,第(2)小題8分)
已知橢圓的方程為,長軸是短軸的2倍,且橢圓過點;斜率為的直線過點,為直線的一個法向量,坐標平面上的點滿足條件.
(1)寫出橢圓方程,并求點到直線的距離;
(2)若橢圓上恰好存在3個這樣的點,求的值.
(本題滿分18分,其中第1小題6分,第2小題4分,第3小題8分)
現(xiàn)有變換公式:可把平面直角坐標系上的一點變換到這一平面上的一點.
(1)若橢圓的中心為坐標原點,焦點在軸上,且焦距為,長軸頂點和短軸頂點間的距離為2. 求該橢圓的標準方程,并求出其兩個焦點、經(jīng)變換公式變換后得到的點和的坐標;
(2) 若曲線上一點經(jīng)變換公式變換后得到的點與點重合,則稱點是曲線在變換下的不動點. 求(1)中的橢圓在變換下的所有不動點的坐標;
(3) 在(2)的基礎上,試探究:中心為坐標原點、對稱軸為坐標軸的橢圓和雙曲線在變換下的不動點的存在情況和個數(shù).
(本題滿分18分,其中第1小題6分,第2小題4分,第3小題8分)
現(xiàn)有變換公式:可把平面直角坐標系上的一點變換到這一平面上的一點.
(1)若橢圓的中心為坐標原點,焦點在軸上,且焦距為,長軸頂點和短軸頂點間的距離為2. 求該橢圓的標準方程,并求出其兩個焦點、經(jīng)變換公式變換后得到的點和的坐標;
(2) 若曲線上一點經(jīng)變換公式變換后得到的點與點重合,則稱點是曲線在變換下的不動點. 求(1)中的橢圓在變換下的所有不動點的坐標;
(3) 在(2)的基礎上,試探究:中心為坐標原點、對稱軸為坐標軸的橢圓和雙曲線在變換下的不動點的存在情況和個數(shù).
一、選擇題
1、C 2、C 3、D 4、B 5、D 6、A
7、D 8、B 9、C 10、A 11、B 12、B
二、填空題
13、±4 14、0.18 15、251,4 16、①②
三、解答題
17、解:(Ⅰ)由,得
即
也即
∴
∴ ∴
(Ⅱ)∵
∴的最大值為
18、解:(Ⅰ)∵擊中目標次的概率為
∴他至少擊中兩次的概率
(Ⅱ)設轉(zhuǎn)移前射擊次數(shù)為,的可能取值為1,2,3,4,5
則,1,2,3,4
∴的分布列為
1
2
3
4
5
∴
19、解:(Ⅰ)∵面,∴面
|