已知橢圓:的離心率.且經(jīng)過點. 查看更多

 

題目列表(包括答案和解析)

已知橢圓)的離心率,左、右焦點分別為,點,點在線段的中垂線上.

(1)求橢圓的方程;

(2)設直線與橢圓交于、兩點,直線的傾斜角分別為、,且,求證:直線經(jīng)過定點,并求該定點的坐標

 

查看答案和解析>>

已知橢圓)的離心率,左、右焦點分別為,點,點在線段的中垂線上.

(1)求橢圓的方程;

(2)設直線:與橢圓交于兩點,直線的傾斜角分別為、,且,求證:直線經(jīng)過定點,并求該定點的坐標

 

查看答案和解析>>

已知橢圓Γ:
x2
a2
+
y2
b2
=1
(a>b>0)過點A(0,2),離心率為
2
2
,過點A的直線l與橢圓交于另一點M.
(I)求橢圓Γ的方程;
(II)是否存在直線l,使得以AM為直徑的圓C,經(jīng)過橢圓Γ的右焦點F且與直線 x-2y-2=0相切?若存在,求出直線l的方程;若不存在,請說明理由.

查看答案和解析>>

已知橢圓Γ:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
2
3
,半焦距為c(c>0),且a-c=1.經(jīng)過橢圓的左焦點F,斜率為k1(k1≠0)的直線與橢圓交于A,B兩點,O為坐標原點.
(Ⅰ)求橢圓Γ的標準方程;
(Ⅱ)當k1=1時,求S△AOB的值;
(Ⅲ)設R(1,0),延長AR,BR分別與橢圓交于C,D兩點,直線CD的斜率為k2,求證:
k1
k2
為定值.

查看答案和解析>>

已知橢圓Γ:+=1(a>b>0)的離心率為,半焦距為c(c>0),且a-c=1.經(jīng)過橢圓的左焦點F,斜率為k1(k1≠0)的直線與橢圓交于A,B兩點,O為坐標原點.
(Ⅰ)求橢圓Γ的標準方程;
(Ⅱ)當k1=1時,求S△AOB的值;
(Ⅲ)設R(1,0),延長AR,BR分別與橢圓交于C,D兩點,直線CD的斜率為k2,求證:為定值.

查看答案和解析>>

說明:1.參考答案與評分標準指出了每道題要考查的主要知識和能力,并給出了一種或幾種解法供參考,如果考生的解法與參考答案不同,可根據(jù)試題主要考查的知識點和能力比照評分標準給以相應的分數(shù).

2.對解答題中的計算題,當考生的解答在某一步出現(xiàn)錯誤時,如果后繼部分的解答未改變該題的內(nèi)容和難度,可視影響的程度決定后繼部分的得分,但所給分數(shù)不得超過該部分正確解答應得分數(shù)的一半;如果后繼部分的解答有較嚴重的錯誤,就不再給分.

3.解答右端所注分數(shù),表示考生正確做到這一步應得的累加分數(shù).

4.只給整數(shù)分數(shù),選擇題和填空題不給中間分.

 

一、選擇題:本大題考查基本知識和基本運算.共10小題,每小題5分,滿分50分.

 

題號

1

2

3

4

5

6

7

8

9

10

答案

B

A

C

C

D

A

B

D

C

B

 

二、填空題:本大題共5小題,每小題5分,滿分20分.其中14~15題是選做題,考生只能選做一題,兩題全答的,只計算前一題得分.第13題第1個空3分,第2個空2分.

11.0         12.79         13.,        14.1       15.6

三、解答題:本大題共6小題,滿分80分.解答須寫出文字說明、證明過程和演算步驟.

16.(本小題主要考查三角函數(shù)性質(zhì)和三角函數(shù)的基本關系等知識,考查化歸與轉(zhuǎn)化的數(shù)學思想方法,以及運算求解能力)

解:(1)

                 .                     
    ∵R,

∴函數(shù)的值域為.                                      

 

(2)∵,,

都是銳角,

.             

                                          

                             

               

的值為.                             

 

17.(本小題主要考查古典概型等基礎知識,考查化歸和轉(zhuǎn)化、分類與整合的數(shù)學思想方法,以及簡單的推理論證能力)

解:由于實數(shù)對的所有取值為:,,,,,,,,,,共16種.                                         

設“直線不經(jīng)過第四象限”為事件,“直線與圓有公共點”為事件.                                                 

(1)若直線不經(jīng)過第四象限,則必須滿足             

即滿足條件的實數(shù)對,,,,共4種. 

故直線不經(jīng)過第四象限的概率為.                     

(2)若直線與圓有公共點,則必須滿足≤1,即

                                                               

 

,則符合要求,此時實數(shù)對()有4種不同取值;

,則符合要求,此時實數(shù)對()有2種不同取值;

,則符合要求,此時實數(shù)對()有2種不同取值;

,則符合要求,此時實數(shù)對()有4種不同取值.

∴滿足條件的實數(shù)對共有12種不同取值.                     

故直線與圓有公共點的概率為.            

 

18.(本小題主要考查空間線面關系、幾何體的表面積與體積等知識,考查數(shù)形結(jié)合的數(shù)學思想方法,以及空間想象能力、運算求解能力)

(1)證法1:如圖,連結(jié),

是長方體,

∴四邊形是平行四邊形.

平面,平面,

平面.                                           

證法2:∵是長方體,

∴平面平面

平面,平面,

平面.                                            

(2)解:設,∵幾何體的體積為

,                        

,

,解得

的長為4.                                                  

 

 

 

(3)如圖,連結(jié),設的中點為,連

是長方體,∴平面

平面,∴

.同理

∴經(jīng)過,,,四點的球的球心為點.                   

.                 

故經(jīng)過,,四點的球的表面積為.                 

 

19.(本小題主要考查橢圓、圓的方程和圓與圓的位置關系等基礎知識,考查數(shù)形結(jié)合思想,以及運算求解能力)

解:(1)∵橢圓的離心率為,且經(jīng)過點

                                                

解得

∴橢圓的方程為.                                   

(2)∵,,∴

∴橢圓的左焦點坐標為.                                  

以橢圓的長軸為直徑的圓的方程為,圓心坐標是,半徑為2.

為直徑的圓的方程為,圓心坐標是,半徑為.

∵兩圓心之間的距離為,

故以為直徑的圓與以橢圓長軸為直徑的圓內(nèi)切.                  

 

 

20.(本小題主要考查等差數(shù)列、等比數(shù)列的通項公式與前項求和公式等知識,考查化歸與轉(zhuǎn)化、分類與整合的數(shù)學思想方法,以及推理論證能力和運算求解能力)

解:設等比數(shù)列的首項為,公比為,           

,成等差數(shù)列,

.                                             

,,∴

解得.                                          

時,∵,,,         

∴當時,,不成等差數(shù)列.                      

時,,成等差數(shù)列.下面給出兩種證明方法.

證法1:∵

                          

                         

                         

                          ,

∴當時,,成等差數(shù)列.                     

證法2:∵,

, 

∴當時,,成等差數(shù)列.                

 

21.(本小題主要考查函數(shù)的性質(zhì)、函數(shù)與導數(shù)等知識,考查化歸與轉(zhuǎn)化、分類與整合的數(shù)學思想方法,以及抽象概括能力、推理論證能力和運算求解能力)

(1)解法1:∵,其定義域為,         

.                                            

是函數(shù)的極值點,

,即,                                          

,∴

經(jīng)檢驗,當時,=1是函數(shù)的極值點,

.        ?                                           

解法2:∵,其定義域為,               

.                                            

,即,整理得,

,

的兩個實根(舍去),,

變化時,的變化情況如下表:


同步練習冊答案