題目列表(包括答案和解析)
圓心為(1,2)且與直線5x-12y-7=0相切的圓的方程為_(kāi)_______.
圓心為(1,2)且與直線5x-12y-7=0相切的圓的方程為_(kāi)_______.
圓心為
(1,2)且與直線5x-12y-7=0相切的圓的方程為______.圓心為(1,2)且與直線5x-12y-7=0相切的圓的方程為_(kāi)_____.
(2005
全國(guó)Ⅱ,13)圓心為(1,2)且與直線5x-12y-7=0相切的圓的方程為__________.(吉林、黑龍江、廣西)
一、選擇題
題號(hào)
1
2
3
4
5
6
7
8
9
10
11
12
答案
C
D
A
B
C
C
A
D
A
C
B
C
二、填空
13 (x-1)2+(y-2)2=4; 14、- ; 15、 384;16、①②③④
三、解答題:
17、本小題主要考查指數(shù)函數(shù)的性質(zhì)、不等式性質(zhì)和解法,考查分析問(wèn)題的能力和運(yùn)算能力
解:∵f (x)=2|x+1|-|x-1|≥2=, 即|x+1|-|x-1|≥.
當(dāng)x≤ -1時(shí),原不等式化為:-2≥(舍);
當(dāng)-1<x≤ 1時(shí),原不等式化為:2x≥ ∴x≥.
∴此時(shí),≤ x≤ 1;
當(dāng)x>1時(shí), 原不等式化為:2≥,
此時(shí),x>1.
故原不等式的解集為:{x|x≥ }.
18、本小題主要考查等差數(shù)列、等比數(shù)列的基本知識(shí)以及運(yùn)用這些知識(shí)的能力
⑴證明:設(shè){an}中首項(xiàng)為a1,公差為d.
∵lga1,lga2,lga4成等差數(shù)列 ∴2lga2=lga1?lga4 ∴a22=a1?a4.
即(a1+d)2=a1(a1+3d) ∴d=0或d=a1.
當(dāng)d=0時(shí), an=a1, bn=, ∴,∴為等比數(shù)列;
當(dāng)d=a1時(shí), an=na1 ,bn=,∴,∴為等比數(shù)列.
綜上可知為等比數(shù)列.
⑵∵無(wú)窮等比數(shù)列{bn }各項(xiàng)的和
∴|q|<1, 由⑴知,q=, d=a1 . bn=
∴, ∴a1=3.
∴.
19、本小題考查離散型隨機(jī)變量分布列和數(shù)學(xué)期望等概念,考查運(yùn)用概率知識(shí)解決實(shí)際問(wèn)題的能力
解:ξ的所有取值為3,4,5
P(ξ=3)=;
P(ξ=4)=;
P(ξ=5)=.
ξ
3
4
5
P
0.28
0.3744
0.3466
∴ξ的分布列為:
∴Eξ=3×0.28+4×0.3744+5×0.3456=0.84+1.4976+1.728=4.0656.
20、本小題主要考查直線與平面垂直、直線與平面所成角的有關(guān)知識(shí)、及思維能力和空間想象能力,考查應(yīng)用向量知識(shí)解決數(shù)學(xué)問(wèn)題的能力
解:方法一:
⑴取PA中點(diǎn)G, 連結(jié)FG, DG.
.
⑵設(shè)AC, BD交于O,連結(jié)FO.
.
設(shè)BC=a, 則AB=a, ∴PA=a, DG=a=EF, ∴PB=2a, AF=a.
設(shè)C到平面AEF的距離為h.
∵VC-AEF=VF-ACE, ∴. 即 ∴. ∴AC與平面AEF所成角的正弦值為.
即AC與平面AEF所成角為.
21、本小題主要考查橢圓和直線的方程與性質(zhì),兩條直線垂直的條件、兩點(diǎn)間的距離、不等式的性質(zhì)等基本知識(shí)及綜合分析能力
解:∵. 即.
當(dāng)MN或PQ中有一條直線垂直于x軸時(shí),另一條直線必垂直于y軸. 不妨設(shè)MN⊥y軸,則PQ⊥x軸.
∵F(0, 1) ∴MN的方程為:y=1,PQ的方程為:x=0分別代入橢圓中得:|MN|=, |PQ|=2.
∴S四邊形PMQN=|MN|?|PQ|=××2=2.
當(dāng)MN,PQ都不與坐標(biāo)軸垂直時(shí),設(shè)MN的方程為y=kx+1 (k≠0),代入橢圓中得:(k2+2)x2+2kx-1=0, ∴x1+x2=, x1?x2=.
∴
同理可得:.
∴S四邊形PMQN=|MN|?|PQ|==
(當(dāng)且僅當(dāng)即時(shí),取等號(hào)).
又S四邊形PMQN =,∴此時(shí), S四邊形PMQN.
綜上可知:(S四邊形PMQN )max=2, (S四邊形PMQN )min=.
22、本小題主要考查導(dǎo)數(shù)的概念和計(jì)算,應(yīng)用導(dǎo)數(shù)研究函數(shù)性質(zhì)的方法及推理和運(yùn)算能力
解:⑴令=0 即[x2-2(a-1)x-2a]ex=0 ∴x2-2(a-1)x-2a=0
∵△=[2(a-1)]2+8a=4(a2+1)>0 ∴x1=, x2=
又∵當(dāng)x∈(-∞, )時(shí),>0;
當(dāng)x∈(, )時(shí),<0;
當(dāng)x∈(, +∞)時(shí),>0.
∴x1, x2分別為f (x)的極大值與極小值點(diǎn).
又∵;當(dāng)時(shí).
而f ()=<0.
∴當(dāng)x=時(shí),f (x)取得最小值.
⑵f (x)在[-1, 1]上單調(diào),則≥ 0(或≤ 0)在[-1, 1]上恒成立.
而=[x2-2(a-1)x-2a]ex, 令g(x)= x2-2(a-1)x-2a=[x-(a-1)]2-(a2+1).
∴≥ 0(或≤ 0) 即g(x) ≥ 0(或≤ 0).
當(dāng)g(x) ≥ 0在[-1, 1]上恒成立時(shí)有:
①當(dāng)-1≤ a-1 ≤1即0≤ a ≤2時(shí), g(x)min=g(a-1)= -(a2+1) ≥ 0(舍);
②當(dāng)a-1>1即a ≥ 2時(shí), g(x)min=g(1)= 3-4a ≥ 0 ∴a≤(舍).
當(dāng)g(x) ≤ 0在[-1, 1]上恒成立時(shí),有:
①當(dāng)-1≤ a-1 ≤ 0即0≤ a ≤ 1時(shí), g(x)max=g(1)=3-4a ≤ 0, ∴≤ a ≤ 1;
②當(dāng)0< a-1 ≤ 1即1< a ≤ 2時(shí), g(x)max=g(-1)= -1 ≤ 0, ∴1< a ≤ 2;
③當(dāng)1< a-1即a > 2時(shí), g(x)max=g(-1)= -1 ≤ 0, ∴a >2.
故a∈[,+∞].
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com