(2)已知弦的中點的橫坐標(biāo)是-.求的值. 查看更多

 

題目列表(包括答案和解析)

精英家教網(wǎng)已知某橢圓的焦點是F1(-4,0)、F2(4,0),過點F2,并垂直于x軸的直線與橢圓的一個交點為B,且|F1B|+|F2B|=10.橢圓上不同的兩點A(x1,y1)、C(x2,y2)滿足條件:|F2A|、|F2B|、|F2C|成等差數(shù)列.
(1)求該橢圓的方程;
(2)求弦AC中點的橫坐標(biāo);
(3)設(shè)弦AC的垂直平分線的方程為y=kx+m,求m的取值范圍.

查看答案和解析>>

已知:⊙M的方程為x2+(y-2)2=1,Q點是x軸上的動點,QA、QB分別切⊙M于A、B.
(1)求弦AB中點P的軌跡方程;
(2)若|AB|>
4
2
3
,求點Q的橫坐標(biāo)xQ的取值范圍.

查看答案和解析>>

已知橢圓的焦點是F1(-4,0)、F2(4,0),過F2并垂直于x軸的直線與橢圓的一個交點為B,且|F1B|+|F2B|=10,橢圓上的不同兩點A(x1,y1)、C(x2,y2)滿足條件|F2A|、|F2B|、|F2C|成等差數(shù)列.

(1)求橢圓的方程;

(2)求弦AC中點的橫坐標(biāo);

(3)設(shè)弦AC的垂直平分線的方程為y=kx+m,求m的取值范圍.

查看答案和解析>>

已知橢圓的焦點是F1(-4,0)、F2(4,0),過F2并垂直于x軸的直線與橢圓的一個交點為B,且|F1B|+|F2B|=10,橢圓上的不同兩點A(x1,y1)、C(x2,y2)滿足條件|F2A|、|F2B|、|F2C|成等差數(shù)列.

(1)求橢圓的方程;

(2)求弦AC中點的橫坐標(biāo);

(3)設(shè)弦AC的垂直平分線的方程為y=kx+m,求m的取值范圍.

查看答案和解析>>

已知某橢圓的焦點是F1(-4,0)、F2(4,0),過點F2,并垂直于x軸的直線與橢圓的一個交點為B,且|F1B|+|F2B|=10.橢圓上不同的兩點A(x1,y1)、C(x2,y2)滿足條件:|F2A|、|F2B|、|F2C|成等差數(shù)列.
(1)求該橢圓的方程;
(2)求弦AC中點的橫坐標(biāo);
(3)設(shè)弦AC的垂直平分線的方程為y=kx+m,求m的取值范圍.

查看答案和解析>>

一、選擇題(本大題共10小題,每小題5分,共50分,每題只有一個正確選項)

題號

1

2

3

4

5

6

7

8

9

10

答案

 

C

A

B

A

D

B

D

A

C

D

二、填空題(本大題共有5小題,每小題4分,共20分)

11. (1,0)      12. 1/2      13.6ec8aac122bd4f6e/9      14. (-1/4,1)    15. 6ec8aac122bd4f6e     

三、解答題(本大題共有5小題,滿分50分,解答應(yīng)寫出文字說明證明過程或演算步驟)

16.(本小題滿分8分)

解:  因為6ec8aac122bd4f6e,所以-2<m<2;……………………………………1分

若方程6ec8aac122bd4f6e無實根,則6ec8aac122bd4f6e,  ……2分

6ec8aac122bd4f6e,    所以q:1<m<3. ……………………………………3分

    因為┲p為假,則p為真,又因為p∧q為假,則q為假.   ……………………5分

所以6ec8aac122bd4f6e……………………7分

    所以-2<m≤1.故實數(shù)6ec8aac122bd4f6e的取值范圍為6ec8aac122bd4f6e.    ………………………………8分

17.(本小題滿分10分)

解:(1)將6ec8aac122bd4f6e代入6ec8aac122bd4f6e,消去6ec8aac122bd4f6e,

整理得6ec8aac122bd4f6e.        ………………………………2分

因為直線6ec8aac122bd4f6e與橢圓6ec8aac122bd4f6e相交于6ec8aac122bd4f6e兩個不同的點,

所以6ec8aac122bd4f6e,……………………4分

 解得6ec8aac122bd4f6e.所以6ec8aac122bd4f6e的取值范圍為6ec8aac122bd4f6e.………………………6分

(2) 解法1:設(shè)6ec8aac122bd4f6e,由⑴知6ec8aac122bd4f6e……7分

∵弦6ec8aac122bd4f6e的中點6ec8aac122bd4f6e的橫坐標(biāo)是-6ec8aac122bd4f6e,∴6ec8aac122bd4f6e…………………8分

∴b=1∈6ec8aac122bd4f6e……10分

解法2:設(shè)6ec8aac122bd4f6e,6ec8aac122bd4f6e    由6ec8aac122bd4f6e,6ec8aac122bd4f6e

作差得6ec8aac122bd4f6e    (*)

因為6ec8aac122bd4f6e6ec8aac122bd4f6e   …………………8分

代入(*)得 6ec8aac122bd4f6e ∴中點6ec8aac122bd4f6e的縱坐標(biāo)是6ec8aac122bd4f6e,

代入6ec8aac122bd4f6e得b=1∈6ec8aac122bd4f6e……10分

18.(本小題滿分10分)

解(1) ∵6ec8aac122bd4f6e=6ec8aac122bd4f6e-6ec8aac122bd4f6e=6ec8aac122bd4f6e-6ec8aac122bd4f6e=(-2,-1,2),

6ec8aac122bd4f6e6ec8aac122bd4f6e   ∴ 設(shè)6ec8aac122bd4f6e………2分

6ec8aac122bd4f6e6ec8aac122bd4f6e  ∴t=±1,   …………………4分

6ec8aac122bd4f6e6ec8aac122bd4f6e………………………………5分

(2) k6ec8aac122bd4f6e+6ec8aac122bd4f6e=(k-1,k,2),k6ec8aac122bd4f6e-26ec8aac122bd4f6e=(k+2,k,-4)………………………………6分

又(k6ec8aac122bd4f6e+6ec8aac122bd4f6e)⊥(k6ec8aac122bd4f6e-26ec8aac122bd4f6e)     所以 (k6ec8aac122bd4f6e+6ec8aac122bd4f6e)?(k6ec8aac122bd4f6e-26ec8aac122bd4f6e)=0…………………7分

∴(k-1,k,2)?(k+2,k,-4)=6ec8aac122bd4f6e…………………………9分

6ec8aac122bd4f6e6ec8aac122bd4f6e                          ………………………………10分

19.(本小題滿分10分)

方法一:證:(Ⅰ)在Rt△BAD中,AD=2,BD=6ec8aac122bd4f6e, ∴AB=2,

ABCD為正方形,因此BDAC. ∵PA⊥平面ABCDBDÌ平面ABCD,∴BDPA  

又∵PAAC=A   BD⊥平面PAC.            ………………………………3分

解:(Ⅱ)作AH⊥PB于H,連結(jié)DH,∵PA⊥AD,AB⊥AD,∴DA⊥平面PAB,∴DH⊥PB,∴∠AHD為二面角A-PB-D的平面角.    ……………………………5分

 又∵PA=AB,∴H是PB中點,∴AH=6ec8aac122bd4f6e,DH=6ec8aac122bd4f6e∴cos∠AHD=AH/DH=6ec8aac122bd4f6e/ 6ec8aac122bd4f6e=6ec8aac122bd4f6e.∴二面角A-PB-D的余弦值是6ec8aac122bd4f6e ………………………………7分

(Ⅲ)∵PA=AB=AD=2,∴PB=PD=BD=6ec8aac122bd4f6e ,設(shè)C到面PBD的距離為d,

6ec8aac122bd4f6e6ec8aac122bd4f6e,有6ec8aac122bd4f6e,                        

6ec8aac122bd4f6e,

6ec8aac122bd4f6e     ………………………………10分  

方法二:證:(Ⅰ)建立如圖所示的直角坐標(biāo)系,

A(0,0,0)、D(0,2,0)、P(0,0,2).

在Rt△BAD中,AD=2,BD=6ec8aac122bd4f6e,

AB=2.∴B(2,0,0)、C(2,2,0),

6ec8aac122bd4f6e   ……………………………1分

6ec8aac122bd4f6e,即BDAPBDAC,又APAC=A,

BD⊥平面PAC.                               ………………………………3分

解:(Ⅱ)由(Ⅰ)得6ec8aac122bd4f6e.

設(shè)平面PBD的法向量為6ec8aac122bd4f6e,則6ec8aac122bd4f6e,

6ec8aac122bd4f6e,∴6ec8aac122bd4f6e  故平面PBD的法向量可取為6ec8aac122bd4f6e  ……5分

DA⊥平面ABCD,∴6ec8aac122bd4f6e為平面PAD的法向量.       ………………6分

設(shè)二面角A-PB-D的大小為q,依題意可得6ec8aac122bd4f6e,∴二面角A-PB-D的余弦值是6ec8aac122bd4f6e.…………7分

(Ⅲ)∵6ec8aac122bd4f6e,又由(Ⅱ)得平面PBD的法向量為6ec8aac122bd4f6e.…………8分

C到面PBD的距離為6ec8aac122bd4f6e   ………………10分

 

 

20、(本小題滿分12分)

(1)設(shè)N(x,y),由題意“過點6ec8aac122bd4f6e6ec8aac122bd4f6e6ec8aac122bd4f6e軸于點6ec8aac122bd4f6e,點M關(guān)于點P的對稱點是6ec8aac122bd4f6e”得6ec8aac122bd4f6e   ………………2分

6ec8aac122bd4f6e=(-x,-6ec8aac122bd4f6e), 6ec8aac122bd4f6e=(1,-6ec8aac122bd4f6e)               ……………………………4分

6ec8aac122bd4f6e?6ec8aac122bd4f6e=0得6ec8aac122bd4f6e                           ……………………………5分

(2)設(shè)L與拋物線交于點6ec8aac122bd4f6e,

則由6ec8aac122bd4f6e,得6ec8aac122bd4f6e,             ……………………………6分

由點A、B在拋物線6ec8aac122bd4f6e上有6ec8aac122bd4f6e,故6ec8aac122bd4f6e………7分

當(dāng)L與X軸垂直時,則由6ec8aac122bd4f6e,得6ec8aac122bd4f6e,

不合題意,故L與X軸不垂直。                     ………………………… ……8分

可設(shè)直線L的方程為y=kx+b(k≠0)

又由6ec8aac122bd4f6e,6ec8aac122bd4f6e,得6ec8aac122bd4f6e

所以6ec8aac122bd4f6e                           ………………………………10分

6ec8aac122bd4f6e,因為6ec8aac122bd4f6e

所以   96<6ec8aac122bd4f6e<480             ………………………………11分

解得直線L的斜率取值范圍為(-1,-6ec8aac122bd4f6e)∪ (6ec8aac122bd4f6e,1)………………………………12分

 

(其他方法酌情給分)

 

 

命題學(xué)校:瑞安四中(65531798) 命題人:薛孝西(13967706784)

審核學(xué)校:洞頭一中(63476763) 審核人:陳  。13968901086)

 


同步練習(xí)冊答案