如何證明?只能轉(zhuǎn)化為指數(shù)證明.回憶指數(shù)的運算法則 查看更多

 

題目列表(包括答案和解析)

如圖,已知四棱錐P-ABCD,底面ABCD為蓌形,PA⊥平面ABCD,∠ABC=60°,E,F分別是BC,PC的中點。 

(Ⅰ)求證:AE⊥PD;

(Ⅱ)若直線PB與平面PAD所成角的正弦值為,求二面角E-AF-C的余弦值.

【解析】(Ⅰ)要證AE⊥PD ,先證AE⊥平面PAD,需要證明PA⊥AE,轉(zhuǎn)化為證PA⊥平面ABCD;(Ⅱ)建立坐標(biāo)系計算二面角E-AF-C的余弦值.

 

查看答案和解析>>

閱讀下面所給材料:已知數(shù)列{an},a1=2,an=3an-1+2,求數(shù)列的通項an
解:令an=an-1=x,則有x=3x+2,所以x=-1,故原遞推式an=3an-1+2可轉(zhuǎn)化為:
an+1=3(an-1+1),因此數(shù)列{an+1}是首項為a1+1,公比為3的等比數(shù)列.
根據(jù)上述材料所給出提示,解答下列問題:
已知數(shù)列{an},a1=1,an=3an-1+4,
(1)求數(shù)列的通項an;并用解析幾何中的有關(guān)思想方法來解釋其原理;
(2)若記Sn=
n
k=1
1
lg(ak+2)lg(ak+1+2)
,求
lim
n→∞
Sn;
(3)若數(shù)列{bn}滿足:b1=10,bn+1=100bn3,利用所學(xué)過的知識,把問題轉(zhuǎn)化為可以用閱讀材料的提示,求出解數(shù)列{bn}的通項公式bn

查看答案和解析>>

已知問題:上海迪斯尼工程某 施工工地上有一堵墻,工程隊欲將長為4a(a>0)的建筑護(hù)欄(厚度不計)借助這堵墻圍成矩形的施工區(qū)域(如圖1),求所得區(qū)域的最大面積.解決這一問題的一種方法是:作出護(hù)欄關(guān)于墻面的軸對稱圖形(如圖2),則原問題轉(zhuǎn)化為“已知矩形周長為8a,求面積的最大值”從而輕松獲解.參考這種借助對稱圖形解決問題的方法,對于下列情形:已知兩堵墻互相垂直圍成“L”形,工程隊將長為4a(a>0)的建筑護(hù)欄借助墻角圍成四邊形的施工區(qū)域(如圖3),可求得所圍區(qū)域的最大面積為
2(
2
+1)a2
2(
2
+1)a2

查看答案和解析>>

下列命題正確的是 (填上你認(rèn)為正確的所有命題的代號)
①④
①④

①函數(shù)y=-sin(kπ+x),(k∈Z)是奇函數(shù);
②函數(shù)y=2sin(2x+
π
3
)
的圖象關(guān)于點(
π
12
,0)
對稱;
③若α、β是第一象限的角,且α>β,則sinα>sinβ
④△ABC中,cosA>cosB等價轉(zhuǎn)化為A<B.

查看答案和解析>>

把“五進(jìn)制”數(shù)1234(5)轉(zhuǎn)化為“八進(jìn)制”數(shù)為( 。

查看答案和解析>>


同步練習(xí)冊答案