所以當為減函數(shù). 查看更多

 

題目列表(包括答案和解析)

設(shè)函數(shù),其中為自然對數(shù)的底數(shù).

(1)求函數(shù)的單調(diào)區(qū)間;

(2)記曲線在點(其中)處的切線為,軸、軸所圍成的三角形面積為,求的最大值.

【解析】第一問利用由已知,所以,

,得, 所以,在區(qū)間上,,函數(shù)在區(qū)間上單調(diào)遞減; 在區(qū)間上,,函數(shù)在區(qū)間上單調(diào)遞增;

第二問中,因為,所以曲線在點處切線為.

切線軸的交點為,與軸的交點為,

因為,所以,  

, 在區(qū)間上,函數(shù)單調(diào)遞增,在區(qū)間上,函數(shù)單調(diào)遞減.所以,當時,有最大值,此時,

解:(Ⅰ)由已知,所以, 由,得,  所以,在區(qū)間上,,函數(shù)在區(qū)間上單調(diào)遞減; 

在區(qū)間上,,函數(shù)在區(qū)間上單調(diào)遞增;  

即函數(shù)的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為.

(Ⅱ)因為,所以曲線在點處切線為.

切線軸的交點為,與軸的交點為,

因為,所以,  

, 在區(qū)間上,函數(shù)單調(diào)遞增,在區(qū)間上,函數(shù)單調(diào)遞減.所以,當時,有最大值,此時,

所以,的最大值為

 

查看答案和解析>>

探究函數(shù),,x∈(0,+∞)的最小值,并確定取得最小值時x的值,列表如下:
請觀察表中y值隨x值變化的特點,完成下列問題:
(1)當x>0時,在區(qū)間(0,2)上遞減,在區(qū)間______上遞增;所以,x=______時,y取到最小值為______;
(2)由此可推斷,當x<0時,有最______值為______,此時x=______;
(3)證明:函數(shù)在區(qū)間(0,2)上遞減;
(4)若方程x2-mx+4=0在[0,3]內(nèi)有兩個不相等的實數(shù)根,求實數(shù)m的取值范圍。

查看答案和解析>>

已知函數(shù),(),

(1)若曲線與曲線在它們的交點(1,c)處具有公共切線,求a,b的值

(2)當時,若函數(shù)的單調(diào)區(qū)間,并求其在區(qū)間(-∞,-1)上的最大值。

【解析】(1), 

∵曲線與曲線在它們的交點(1,c)處具有公共切線

,

(2)令,當時,

,得

時,的情況如下:

x

+

0

-

0

+

 

 

所以函數(shù)的單調(diào)遞增區(qū)間為,,單調(diào)遞減區(qū)間為

,即時,函數(shù)在區(qū)間上單調(diào)遞增,在區(qū)間上的最大值為,

,即時,函數(shù)在區(qū)間內(nèi)單調(diào)遞增,在區(qū)間上單調(diào)遞減,在區(qū)間上的最大值為

,即a>6時,函數(shù)在區(qū)間內(nèi)單調(diào)遞贈,在區(qū)間內(nèi)單調(diào)遞減,在區(qū)間上單調(diào)遞增。又因為

所以在區(qū)間上的最大值為。

 

查看答案和解析>>

設(shè)函數(shù)

(Ⅰ) 當時,求的單調(diào)區(qū)間;

(Ⅱ) 若上的最大值為,求的值.

【解析】第一問中利用函數(shù)的定義域為(0,2),.

當a=1時,所以的單調(diào)遞增區(qū)間為(0,),單調(diào)遞減區(qū)間為(,2);

第二問中,利用當時, >0, 即上單調(diào)遞增,故上的最大值為f(1)=a 因此a=1/2.

解:函數(shù)的定義域為(0,2),.

(1)當時,所以的單調(diào)遞增區(qū)間為(0,),單調(diào)遞減區(qū)間為(,2);

(2)當時, >0, 即上單調(diào)遞增,故上的最大值為f(1)=a 因此a=1/2.

 

查看答案和解析>>

已知函數(shù),.

(Ⅰ)若函數(shù)依次在處取到極值.求的取值范圍;

(Ⅱ)若存在實數(shù),使對任意的,不等式 恒成立.求正整數(shù)的最大值.

【解析】第一問中利用導(dǎo)數(shù)在在處取到極值點可知導(dǎo)數(shù)為零可以解得方程有三個不同的實數(shù)根來分析求解。

第二問中,利用存在實數(shù),使對任意的,不等式 恒成立轉(zhuǎn)化為,恒成立,分離參數(shù)法求解得到范圍。

解:(1)

(2)不等式 ,即,即.

轉(zhuǎn)化為存在實數(shù),使對任意的,不等式恒成立.

即不等式上恒成立.

即不等式上恒成立.

設(shè),則.

設(shè),則,因為,有.

在區(qū)間上是減函數(shù)。又

故存在,使得.

時,有,當時,有.

從而在區(qū)間上遞增,在區(qū)間上遞減.

[來源:]

所以當時,恒有;當時,恒有;

故使命題成立的正整數(shù)m的最大值為5

 

查看答案和解析>>


同步練習(xí)冊答案