題目列表(包括答案和解析)
已知函數(shù).()
(1)若在區(qū)間上單調(diào)遞增,求實(shí)數(shù)的取值范圍;
(2)若在區(qū)間上,函數(shù)的圖象恒在曲線下方,求的取值范圍.
【解析】第一問中,首先利用在區(qū)間上單調(diào)遞增,則在區(qū)間上恒成立,然后分離參數(shù)法得到,進(jìn)而得到范圍;第二問中,在區(qū)間上,函數(shù)的圖象恒在曲線下方等價(jià)于在區(qū)間上恒成立.然后求解得到。
解:(1)在區(qū)間上單調(diào)遞增,
則在區(qū)間上恒成立. …………3分
即,而當(dāng)時(shí),,故. …………5分
所以. …………6分
(2)令,定義域?yàn)?img src="http://thumb.1010pic.com/pic6/res/gzsx/web/STSource/2012061918574873515193/SYS201206191859562664899842_ST.files/image016.png">.
在區(qū)間上,函數(shù)的圖象恒在曲線下方等價(jià)于在區(qū)間上恒成立.
∵ …………9分
① 若,令,得極值點(diǎn),,
當(dāng),即時(shí),在(,+∞)上有,此時(shí)在區(qū)間上是增函數(shù),并且在該區(qū)間上有,不合題意;
當(dāng),即時(shí),同理可知,在區(qū)間上遞增,
有,也不合題意; …………11分
② 若,則有,此時(shí)在區(qū)間上恒有,從而在區(qū)間上是減函數(shù);
要使在此區(qū)間上恒成立,只須滿足,
由此求得的范圍是. …………13分
綜合①②可知,當(dāng)時(shí),函數(shù)的圖象恒在直線下方.
已知函數(shù);
(1)若函數(shù)在其定義域內(nèi)為單調(diào)遞增函數(shù),求實(shí)數(shù)的取值范圍。
(2)若函數(shù),若在[1,e]上至少存在一個(gè)x的值使成立,求實(shí)數(shù)的取值范圍。
【解析】第一問中,利用導(dǎo)數(shù),因?yàn)?img src="http://thumb.1010pic.com/pic6/res/gzsx/web/STSource/2012070911301664012899/SYS201207091131067338626240_ST.files/image003.png">在其定義域內(nèi)的單調(diào)遞增函數(shù),所以 內(nèi)滿足恒成立,得到結(jié)論第二問中,在[1,e]上至少存在一個(gè)x的值使成立,等價(jià)于不等式 在[1,e]上有解,轉(zhuǎn)換為不等式有解來(lái)解答即可。
解:(1),
因?yàn)?img src="http://thumb.1010pic.com/pic6/res/gzsx/web/STSource/2012070911301664012899/SYS201207091131067338626240_ST.files/image003.png">在其定義域內(nèi)的單調(diào)遞增函數(shù),
所以 內(nèi)滿足恒成立,即恒成立,
亦即,
即可 又
當(dāng)且僅當(dāng),即x=1時(shí)取等號(hào),
在其定義域內(nèi)為單調(diào)增函數(shù)的實(shí)數(shù)k的取值范圍是.
(2)在[1,e]上至少存在一個(gè)x的值使成立,等價(jià)于不等式 在[1,e]上有解,設(shè)
上的增函數(shù),依題意需
實(shí)數(shù)k的取值范圍是
已知函數(shù)的最小值為0,其中
(Ⅰ)求的值;
(Ⅱ)若對(duì)任意的有≤成立,求實(shí)數(shù)的最小值;
(Ⅲ)證明().
【解析】(1)解: 的定義域?yàn)?img src="http://thumb.1010pic.com/pic6/res/gzsx/web/STSource/2012071821180638818491/SYS201207182118530600520067_ST.files/image010.png">
由,得
當(dāng)x變化時(shí),,的變化情況如下表:
x |
|||
- |
0 |
+ |
|
極小值 |
因此,在處取得最小值,故由題意,所以
(2)解:當(dāng)時(shí),取,有,故時(shí)不合題意.當(dāng)時(shí),令,即
令,得
①當(dāng)時(shí),,在上恒成立。因此在上單調(diào)遞減.從而對(duì)于任意的,總有,即在上恒成立,故符合題意.
②當(dāng)時(shí),,對(duì)于,,故在上單調(diào)遞增.因此當(dāng)取時(shí),,即不成立.
故不合題意.
綜上,k的最小值為.
(3)證明:當(dāng)n=1時(shí),不等式左邊==右邊,所以不等式成立.
當(dāng)時(shí),
在(2)中取,得 ,
從而
所以有
綜上,,
已知函數(shù),.
(Ⅰ)若函數(shù)依次在處取到極值.求的取值范圍;
(Ⅱ)若存在實(shí)數(shù),使對(duì)任意的,不等式 恒成立.求正整數(shù)的最大值.
【解析】第一問中利用導(dǎo)數(shù)在在處取到極值點(diǎn)可知導(dǎo)數(shù)為零可以解得方程有三個(gè)不同的實(shí)數(shù)根來(lái)分析求解。
第二問中,利用存在實(shí)數(shù),使對(duì)任意的,不等式 恒成立轉(zhuǎn)化為,恒成立,分離參數(shù)法求解得到范圍。
解:(1)
①
(2)不等式 ,即,即.
轉(zhuǎn)化為存在實(shí)數(shù),使對(duì)任意的,不等式恒成立.
即不等式在上恒成立.
即不等式在上恒成立.
設(shè),則.
設(shè),則,因?yàn)?img src="http://thumb.1010pic.com/pic6/res/gzsx/web/STSource/2012070911530204634527/SYS201207091153477963415106_ST.files/image016.png">,有.
故在區(qū)間上是減函數(shù)。又
故存在,使得.
當(dāng)時(shí),有,當(dāng)時(shí),有.
從而在區(qū)間上遞增,在區(qū)間上遞減.
又[來(lái)源:]
所以當(dāng)時(shí),恒有;當(dāng)時(shí),恒有;
故使命題成立的正整數(shù)m的最大值為5
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com