可知函數(shù)有兩個極值點. 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)f(x)=ax3+bx2-3x在x=±1處取得極值
(1)求函數(shù)f(x)的解析式;
(2)求證:對于區(qū)間[-1,1]上任意兩個自變量的值x1,x2,都有|f(x1)-f(x2)|≤4;
(3)若過點A(1,m)(m≠-2)可作曲線y=f(x)的三條切線,求實數(shù)m的范圍.

查看答案和解析>>

已知函數(shù)f(x)=aln(1+ex)-(a+1)x,g(x)=x2-(a-1)x-f(lnx),且g(x)在x=1處取得極值.
(Ⅰ)求實數(shù)a的值;
(Ⅱ)證明:對(-∞,+∞)上任意兩個互異的實數(shù)x,y,都有f(
x+y
2
)<
f(x)+f(y)
2

(Ⅲ)已知△ABC的三個頂點A,B,C都在函數(shù)y=f(x)的圖象上,且橫坐標依次成等差數(shù)列,求證△ABC是鈍角三角形.并問它可能是等腰三角形嗎?說明理由.

查看答案和解析>>

已知函數(shù)f(x)=x3+mx2+nx有兩個不同的極值點α,β,設(shè)f(x)在點(-1,f(-1))處的切線為l1,其斜率為k1;在點(1,f(1))處的切線為l2,其斜率為k2
(1)若m=1,n=-1,當t∈(-1,1)時,求函數(shù)f(x)在x∈[t,1]上的最小值;
(2)若k1=-
1
2
,|α-β|=
10
3
,求m,n;
(3)若α,β∈(-1,1),求k1•k2可能取到的最大整數(shù)值.

查看答案和解析>>

已知函數(shù)f(x)=x3+bx2+cx在x=α與x=β處有兩個不同的極值點,設(shè)x在點(-1,f(-1))處的切線為l1,其斜率為k1;在點(1,f(1))處的切線為l2,其斜率為k2
(1)若l1⊥l2,|α-β|=
10
3
,求b,c的值;
(2)若α,β∈(-1,1),求k1k2可能取到的最大整數(shù)值.

查看答案和解析>>

已知函數(shù)f(x)=ax3+bx2-3x在x=±1處取得極值
(1)求函數(shù)f(x)的解析式;
(2)求證:對于區(qū)間[-1,1]上任意兩個自變量的值x1,x2,都有|f(x1)-f(x2)|≤4;
(3)若過點A(1,m)(m≠-2)可作曲線y=f(x)的三條切線,求實數(shù)m的范圍.

查看答案和解析>>


同步練習冊答案