題目列表(包括答案和解析)
… | 0.5 | 1 | 1.5 | 1.7 | 1.9 | 2 | 2.1 | 2.2 | 2.3 | 3 | 4 | 5 | 7 | … | |
… | 8.5 | 5 | 4.17 | 4.05 | 4.005 | 4 | 4.005 | 4.102 | 4.24 | 4.3 | 5 | 5.8 | 7.57 | … |
(本題滿分12分)探究函數,的最小值,并確定取得最小值時的值,列表如下:
… |
0.5 |
1 |
1.5 |
1.7 |
1.9 |
2 |
2.1 |
2.2 |
2.3 |
3 |
4 |
5 |
7 |
… |
|
… |
8.5 |
5 |
4.17 |
4.05 |
4.005 |
4 |
4.005 |
4.102 |
4.24 |
4.3 |
5 |
5.8 |
7.57 |
… |
請觀察表中值隨值變化的特點,完成下列問題:
(1) 當時,在區(qū)間上遞減,在區(qū)間 上遞增;
所以,= 時, 取到最小值為 ;
(2) 由此可推斷,當時,有最 值為 ,此時= ;
(3) 證明: 函數在區(qū)間上遞減;
(4) 若方程在內有兩個不相等的實數根,求實數的取值范圍。
(本題滿分12分)探究函數,的最小值,并確定取得最小值時的值,列表如下:
… | 0.5 | 1 | 1.5 | 1.7 | 1.9 | 2 | 2.1 | 2.2 | 2.3 | 3 | 4 | 5 | 7 | … | |
… | 8.5 | 5 | 4.17 | 4.05 | 4.005 | 4 | 4.005 | 4.102 | 4.24 | 4.3 | 5 | 5.8 | 7.57 | … |
請觀察表中值隨值變化的特點,完成下列問題:
(1) 當時,在區(qū)間上遞減,在區(qū)間 上遞增;
所以,= 時, 取到最小值為 ;
(2) 由此可推斷,當時,有最 值為 ,此時= ;
(3) 證明: 函數在區(qū)間上遞減;
(4) 若方程在內有兩個不相等的實數根,求實數的取值范圍。
5 |
|
|
|
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com