解法二:由于小球每次遇到黑色障礙物時.有一次向左和兩次向右或兩次向左和一次向右下落時小球?qū)⒙淙氪? 查看更多

 

題目列表(包括答案和解析)

如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.

(Ⅰ)證明PC⊥AD;

(Ⅱ)求二面角A-PC-D的正弦值;

(Ⅲ)設(shè)E為棱PA上的點(diǎn),滿足異面直線BE與CD所成的角為30°,求AE的長.

 

【解析】解法一:如圖,以點(diǎn)A為原點(diǎn)建立空間直角坐標(biāo)系,依題意得A(0,0,0),D(2,0,0),C(0,1,0), ,P(0,0,2).

(1)證明:易得,于是,所以

(2) ,設(shè)平面PCD的法向量,

,即.不防設(shè),可得.可取平面PAC的法向量于是從而.

所以二面角A-PC-D的正弦值為.

(3)設(shè)點(diǎn)E的坐標(biāo)為(0,0,h),其中,由此得.

,故 

所以,,解得,即.

解法二:(1)證明:由,可得,又由,,故.又,所以.

(2)如圖,作于點(diǎn)H,連接DH.由,,可得.

因此,從而為二面角A-PC-D的平面角.在中,,由此得由(1)知,故在中,

因此所以二面角的正弦值為.

(3)如圖,因?yàn)?img src="http://thumb.1010pic.com/pic6/res/gzsx/web/STSource/2012071821180638818491/SYS201207182118431693242163_ST.files/image044.png">,故過點(diǎn)B作CD的平行線必與線段AD相交,設(shè)交點(diǎn)為F,連接BE,EF. 故或其補(bǔ)角為異面直線BE與CD所成的角.由于BF∥CD,故.在中,

中,由,,

可得.由余弦定理,,

所以.

 

查看答案和解析>>

精英家教網(wǎng)將一個半徑適當(dāng)?shù)男∏蚍湃肴鐖D所示的容器最上方的入口處,小球?qū)⒆杂上侣洌∏蛟谡麄下落過程中它將3次遇到黑色障礙物,最后落入A袋或B袋中.已知小球每次遇到黑色障礙物時,向左、右兩邊下落的概率都是
12

(Ⅰ)求小球落入B袋中的概率P(B);
(Ⅱ)在容器入口處依次放入2個小球,記落入A袋中的小球個數(shù)為ξ,試求ξ的分布列和ξ的數(shù)學(xué)期望Eξ.

查看答案和解析>>

將一個半徑適當(dāng)?shù)男∏蚍湃肴鐖D所示的容器最上方的入口處,小球?qū)⒆杂上侣洌∏蛟谙侣涞倪^程中,將3次遇到黑色障礙物,最后落入A袋或B袋中.已知小球每次遇到黑色障礙物時,向左、右兩邊下落的概率都是
12

(1)求小球落入A袋中的概率P(A);
(2)在容器入口處依次放入4個小球,記 ξ為落入A袋中的小球個數(shù),試求ξ=3的概率和ξ的數(shù)學(xué)期望 Eξ;
(3)如果規(guī)定在容器入口處放入1個小球,若小球落入A袋獎10 元,若小球落入B袋罰4元,試求所得獎金數(shù)η的分布列和數(shù)學(xué)期望,并回答你是否參加這個游戲?

查看答案和解析>>

(2011•丹東模擬)如圖,在豎直平面內(nèi)有一個“游戲滑道”,空白部分表示光滑滑道,黑色正方形表示障礙物,自上而下第一行有1個障礙物,第二行有2個障礙物,…,依此類推.一個半徑適當(dāng)?shù)墓饣鶆蛐∏驈娜肟贏投入滑道,小球?qū)⒆杂上侣洌阎∏蛎看斡龅秸叫握系K物上頂點(diǎn)時,向左、右兩邊下落的概率都是
1
2
.記小球遇到第n行第m個障礙物(從左至右)上頂點(diǎn)的概率為P(n,m).
(Ⅰ)求P(4,1),P(4,2)的值,并猜想P(n,m)的表達(dá)式(不必證明);
(Ⅱ)已知f(x)=
4-x,1≤x≤3
x-3,3<x≤6
,設(shè)小球遇到第6行第m個障礙物(從左至右)上頂點(diǎn)時,得到的分?jǐn)?shù)為ξ=f(m),試求ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

精英家教網(wǎng)將一個半徑適當(dāng)?shù)男∏蚍湃肴鐖D所示的容器最上方的入口處,小球?qū)⒆杂上侣洌∏蛟谙侣溥^程中,將3次遇到黑色障礙物,最后落入A袋或B袋中.已知小球每次遇到黑色障礙物時向左、右兩邊下落的概率都是
12

(Ⅰ)求小球落入A袋中的概率P(A);
(Ⅱ)在容器入口處依次放入4個小球,記X為落入A袋中小球的個數(shù),試求X=3的概率和X的數(shù)學(xué)期望EX.

查看答案和解析>>


同步練習(xí)冊答案