⑴試用表示, 查看更多

 

題目列表(包括答案和解析)

已知數(shù)列的前項和為,且 (N*),其中

(Ⅰ) 求的通項公式;

(Ⅱ) 設 (N*).

①證明:

② 求證:.

【解析】本試題主要考查了數(shù)列的通項公式的求解和運用。運用關系式,表示通項公式,然后得到第一問,第二問中利用放縮法得到,②由于,

所以利用放縮法,從此得到結論。

解:(Ⅰ)當時,由.  ……2分

若存在,

從而有,與矛盾,所以.

從而由.  ……6分

 (Ⅱ)①證明:

證法一:∵

 

.…………10分

證法二:,下同證法一.           ……10分

證法三:(利用對偶式)設,

.又,也即,所以,也即,又因為,所以.即

                    ………10分

證法四:(數(shù)學歸納法)①當時, ,命題成立;

   ②假設時,命題成立,即,

   則當時,

    即

故當時,命題成立.

綜上可知,對一切非零自然數(shù),不等式②成立.           ………………10分

②由于,

所以,

從而.

也即

 

查看答案和解析>>

已知,函數(shù)(其中為自然對數(shù)的底數(shù)).

  (Ⅰ)求函數(shù)在區(qū)間上的最小值;

  (Ⅱ)設數(shù)列的通項是前項和,證明:

【解析】本試題主要考查導數(shù)在研究函數(shù)中的運用,求解函數(shù)給定區(qū)間的最值問題,以及能結合數(shù)列的相關知識,表示數(shù)列的前n項和,同時能構造函數(shù)證明不等式的數(shù)學思想。是一道很有挑戰(zhàn)性的試題。

 

查看答案和解析>>

數(shù)列,)由下列條件確定:①;②當時,滿足:當時,,;當時,.

(Ⅰ)若,,求,,,并猜想數(shù)列的通項公式(不需要證明);

(Ⅱ)在數(shù)列中,若(,且),試用表示,;

(Ⅲ)在(Ⅰ)的條件下,設數(shù)列滿足, (其中為給定的不小于2的整數(shù)),求證:當時,恒有.

查看答案和解析>>

(08年黃岡市質檢文) (14分) 把自然數(shù)按上小下大、左小右大的原則排成如圖的三角形數(shù)表(每行比上一行多一個數(shù)).設是位于這個三角形數(shù)表中從上往下數(shù)第行、從左往右數(shù)的第個數(shù)(如).

⑴試用表示(不要求證明);

⑵若,求的值;

⑶記三角形數(shù)表從上往下數(shù)第行各數(shù)和為,令,若數(shù)列的前項和為,求

 

查看答案和解析>>

精英家教網(wǎng)把自然數(shù)按上小下大、左小右大的原則排成如圖的三角形數(shù)表(每行比上一行多一個數(shù)).設aij(i,j∈N*)是位于這個三角形數(shù)表中從上往下數(shù)第i行、從左往右數(shù)的第j個數(shù)(如a42=8).
(1)試用i表示aii(不要求證明);
(2)若aij=2008,求i,j的值;
(3)記三角形數(shù)表從上往下數(shù)第n行的各數(shù)之和為bn,令cn=
1,(n=1)
n
bn-n
,(n≥2)
,若數(shù)列{cn}的前n項和為Tn,求Tn

查看答案和解析>>


同步練習冊答案