(2)猜想 5′證明:①當(dāng)n=1時.猜想成立. 6′ 查看更多

 

題目列表(包括答案和解析)

已知數(shù)列
1
1×3
1
3×5
1
5×7
,…
1
(2n-1)(2n+1)

(1)求出S1,S2,S3,S4;
(2)猜想前n項和Sn并證明.

查看答案和解析>>

設(shè)an=
1•3•5…(2n-1)
2•4•6…2n
bn=
1
2n+1
(n∈N*)

(1)計算a1,a2,a3與b1,b2,b3,比較a1與b1,a2與b2,a3與b3的大。
(2)猜想an與bn的大小,并用數(shù)學(xué)歸納法證明你的結(jié)論.

查看答案和解析>>

(1)判斷函數(shù)f(x)=x+
4
x
在x∈(0,+∞)上的單調(diào)性并證明你的結(jié)論?
(2)猜想函數(shù)f(x)=x+
a
x
,(a>0)
在x∈(-∞,0)∪(0,+∞)上的單調(diào)性?(只需寫出結(jié)論,不用證明)
(3)利用題(2)的結(jié)論,求使不等式x+
9
x
-2m2+m<0
在x∈[1,5]上恒成立時的實數(shù)m的取值范圍?

查看答案和解析>>

(1)請?zhí)畋?BR>
n 1 2 3 4 5 6 7 8
n2
2n
(2)根據(jù)表中數(shù)據(jù)填空:若n∈N*,則當(dāng)
n=1或n≥5
n=1或n≥5
時,n2<2n;
(3)證明在(2)中你所得的結(jié)論;
(4)若x∈R,猜想方程x2=2x有幾個實數(shù)根?并簡單說明猜想的過程.

查看答案和解析>>

精英家教網(wǎng)圖中豎直線段和斜線段都表示通道,并且在交點處相遇,若豎直線段有一條的為第一層,有兩條的為第二層,以此類推,豎直線段有n條的為第n層,每一層的豎直通道從左到右分別稱為第1通道、第2通道,…,現(xiàn)在有一個小球從入口向下(只能向下,不能向上)運動,小球在每個交點處向左到達(dá)下一層或者向右到達(dá)下一層的可能性是相同的.小球到達(dá)第n層第m通道的不同路徑數(shù)稱為an,m,如小球到達(dá)第二層第1通道和第二層第2通道的路徑都只有一種情況,因此,a2,1=1,a2,2=1.
求:(1)a3,1,a3,2,a3,3
(2)a5,2,以及小球到達(dá)第5層第2通道的概率;
(3)猜想an,2(n≥2),并證明;
(4)猜想an,3(n≥3)(不用證明).

查看答案和解析>>


同步練習(xí)冊答案