而n = 1時(shí).易知a1 = 1 < 3成立.所以? 10分 查看更多

 

題目列表(包括答案和解析)

已知是等差數(shù)列,其前n項(xiàng)和為Sn是等比數(shù)列,且,.

(Ⅰ)求數(shù)列的通項(xiàng)公式;

(Ⅱ)記,,證明).

【解析】(1)設(shè)等差數(shù)列的公差為d,等比數(shù)列的公比為q.

,得,,.

由條件,得方程組,解得

所以,.

(2)證明:(方法一)

由(1)得

     ①

   ②

由②-①得

(方法二:數(shù)學(xué)歸納法)

①  當(dāng)n=1時(shí),,,故等式成立.

②  假設(shè)當(dāng)n=k時(shí)等式成立,即,則當(dāng)n=k+1時(shí),有:

   

   

,因此n=k+1時(shí)等式也成立

由①和②,可知對任意,成立.

 

查看答案和解析>>

已知Sn是數(shù)列{
1
n
}的前n項(xiàng)和,
(1)分別計(jì)算S2-S1,S4-S2,S8-S4的值;
(2)證明:當(dāng)n≥1時(shí),S2^-S2n-1
1
2
,并指出等號成立條件;
(3)利用(2)的結(jié)論,找出一個(gè)適當(dāng)?shù)腡∈N,使得ST>2010;
(4)是否存在關(guān)于正整數(shù)n的函數(shù)f(n),使得S1+S2+…+Sn-1=f(n)(Sn-1)對于大于1的正整數(shù)n都成立?證明你的結(jié)論.

查看答案和解析>>

已知等比數(shù)列{an}滿足an>0,n=1,2,…,且a5•a2n-5=22n(n≥3),則當(dāng)n≥1時(shí),log2a1+log2a3+…+log2a2n-1=
n2
n2

查看答案和解析>>

已知等比數(shù)列{an}滿足an>0,n=1,2,…,且a3a2n-3=32n(n≥2),則當(dāng)n≥1時(shí),log3a1+log3a3+…log3a2n-1=
n2
n2

查看答案和解析>>

已知函數(shù)f(x)=
13
x3-(a+1)x2+4ax
,((a∈R)).
(Ⅰ)若函數(shù)y=f(x)在區(qū)間(-∞,0)上單調(diào)遞增,在區(qū)間(0,1)上單調(diào)遞減,求實(shí)數(shù)a的值;
(Ⅱ)若常數(shù)a<1,求函數(shù)f(x)在區(qū)間[0,2]上的最大值;
(Ⅲ)已知a=0,求證:對任意的m、n,當(dāng)m<n≤1時(shí),總存在實(shí)數(shù)t∈(m,n),使不等式f(m)+f(n)<2f(t)成立.

查看答案和解析>>


同步練習(xí)冊答案