使⊥.連結(jié).. 查看更多

 

題目列表(包括答案和解析)

如圖,某地為了開發(fā)旅游資源,欲修建一條連接風(fēng)景點P和居民區(qū)O的公路,點P所在的山坡面與山腳所在水平面α所成的二面角為θ(0°<θ<90°),且數(shù)學(xué)公式,點P到平面α的距離PH=0.4(km).沿山腳原有一段筆直的公路AB可供利用、從點O到山腳修路的造價為a萬元/km,原有公路改建費用為數(shù)學(xué)公式萬元/km、當山坡上公路長度為lkm(1≤l≤2)時,其造價為(l2+1)a萬元、已知OA⊥AB,PB⊥AB,AB=1.5(km),數(shù)學(xué)公式
(I)在AB上求一點D,使沿折線PDAO修建公路的總造價最小;
(II)對于(I)中得到的點D,在DA上求一點E,使沿折線PDEO修建公路的總造價最。
(III)在AB上是否存在兩個不同的點D',E',使沿折線PD'E'O修建公路的總造價小于(II)中得到的最小總造價,證明你的結(jié)論、

查看答案和解析>>

如圖,某地為了開發(fā)旅游資源,欲修建一條連接風(fēng)景點P和居民區(qū)O的公路,點P所在的山坡面與山腳所在水平面α所成的二面角為θ(0°<θ<90°),且,點P到平面α的距離PH=0.4(km).沿山腳原有一段筆直的公路AB可供利用、從點O到山腳修路的造價為a萬元/km,原有公路改建費用為萬元/km、當山坡上公路長度為lkm(1≤l≤2)時,其造價為(l2+1)a萬元、已知OA⊥AB,PB⊥AB,AB=1.5(km),
(I)在AB上求一點D,使沿折線PDAO修建公路的總造價最。
(II)對于(I)中得到的點D,在DA上求一點E,使沿折線PDEO修建公路的總造價最。
(III)在AB上是否存在兩個不同的點D',E',使沿折線PD'E'O修建公路的總造價小于(II)中得到的最小總造價,證明你的結(jié)論、

查看答案和解析>>

(2009•大連二模)(I)已知函數(shù)f(x)=x-
1
x
,x∈(
1
4
,
1
2
),P(x1,f(x1)),Q(x2,f(x2))是f(x)
圖象上的任意兩點,且x1<x2
①求直線PQ的斜率kPQ的取值范圍及f(x)圖象上任一點切線的斜率k的取值范圍;
②由①你得到的結(jié)論是:若函數(shù)f(x)在[a,b]上有導(dǎo)函數(shù)f′(x),且f(a)、f(b)存在,則在(a,b)內(nèi)至少存在一點ξ,使得f′(ξ)=
f(b)-f(a)
b-a
f(b)-f(a)
b-a
成立(用a,b,f(a),f(b)表示,只寫出結(jié)論,不必證明)
(II)設(shè)函數(shù)g(x)的導(dǎo)函數(shù)為g′(x),且g′(x)為單調(diào)遞減函數(shù),g(0)=0.試運用你在②中得到的結(jié)論證明:
當x∈(0,1)時,f(1)x<g(x).

查看答案和解析>>

現(xiàn)有甲、乙兩個靶,某射手進行射擊訓(xùn)練,每次射擊擊中甲靶的概率是p1,每次射擊擊中乙靶的概率是p2,其中p1>p2,已知該射手先后向甲、乙兩靶各射擊一次,兩次都能擊中與兩次都不能擊中的概率分別為
8
15
,
1
15
.該射手在進行射擊訓(xùn)練時各次射擊結(jié)果互不影響.
(Ⅰ)求p1,p2的值;
(Ⅱ)假設(shè)該射手射擊乙靶三次,每次射擊擊中目標得1分,未擊中目標得0分.在三次射擊中,若有兩次連續(xù)擊中,而另外一次未擊中,則額外加1分;若三次全擊中,則額外加3分.記η為該射手射擊三次后的總的分數(shù),求η的分布列;
(Ⅲ)某研究小組發(fā)現(xiàn),該射手在n次射擊中,擊中目標的次數(shù)X服從二項分布.且射擊甲靶10次最有可能擊中8次,射擊乙靶10次最有可能擊中7次.試探究:如果X:B(n,p),其中0<p<1,求使P(X=k)(0≤k≤n)最大自然數(shù)k.

查看答案和解析>>

把橢圓C的短軸和焦點連線段中較長者、較短者分別作為橢圓C′的長軸、短軸,使橢圓C變換成橢圓C′,稱之為橢圓的一次“壓縮”.按上述定義把橢圓Ci(i=0,1,2,…)“壓縮”成橢圓Ci+1,得到一系列橢圓C1,C2,C3,…,當短軸長與截距相等時終止“壓縮”.經(jīng)研究發(fā)現(xiàn),某個橢圓C0經(jīng)過n(n≥3)次“壓縮”后能終止,則橢圓Cn-2的離心率可能是:①
3
2
,②
10
5
,③
3
3
,④
6
3
中的______(填寫所有正確結(jié)論的序號)

查看答案和解析>>


同步練習(xí)冊答案