題目列表(包括答案和解析)
如圖,在三棱柱ABC-A1B1C1中,AB⊥AC,頂點A1在底面ABC上的射影恰為點B,且AB=AC=A1B=2.
(1)求證:A1C1⊥平面AA1B1B;
(2)若P為線段B1C1的中點,求四棱錐P-AA1B1B的體積VP-AA1B1B;
(3)在線段B1C1上是否存在點Q,使得AQ=?若存在,請確定點Q的位置;若不存在,請說明理由.
OQ |
OA |
OB |
| ||
2 |
1 |
3 |
如圖,已知四棱錐S―ABCD的底面是邊長為4的正方形,S在底面上的射影O落在正方形ABCD內(nèi),且O到AB、AD的距離分別為2和1.
(I)求證是定值;
(II)已知P是SC的中點,且SO=3,問在棱SA上是否存在一點Q,使得異面直線OP與BQ所成的角為90°?若存在,請給出證明,并求出AQ的長;若不存在,請說明理由.
已知拋物線C的方程為,焦點為F,有一定點,A在拋物線準(zhǔn)線上的射影為H,P為拋物線上一動點.
(1)當(dāng)|AP|+|PF|取最小值時,求;
(2)如果一橢圓E以O(shè)、F為焦點,且過點A,求橢圓E的方程及右準(zhǔn)線方程;
(3)設(shè)是過點A且垂直于x軸的直線,是否存在直線,使得與拋物線C交于兩個
不同的點M、N,且MN恰被平分?若存在,求出的傾斜角的范圍;若不存在,請
說明理由.
已知拋物線C的方程為,焦點為F,有一定點,A在拋物線準(zhǔn)線上的射影為H,P為拋物線上一動點.
(1)當(dāng)|AP|+|PF|取最小值時,求;
(2)如果一橢圓E以O(shè)、F為焦點,且過點A,求橢圓E的方程及右準(zhǔn)線方程;
(3)設(shè)是過點A且垂直于x軸的直線,是否存在直線,使得與拋物線C交于兩個
不同的點M、N,且MN恰被平分?若存在,求出的傾斜角的范圍;若不存在,請
說明理由.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com