(Ⅰ)求.的值及的表達式, 查看更多

 

題目列表(包括答案和解析)

已知A、B、C為△ABC的三個內(nèi)角,設(shè)f(A,B)=sin22A+cos22B-
3
sin2A-cos2B+2

(1)當f(A,B)取得最小值時,求C的大;
(2)當C=
π
2
時,記h(A)=f(A,B),試求h(A)的表達式及定義域;
(3)在(2)的條件下,是否存在向量
p
,使得函數(shù)h(A)的圖象按向量
p
平移后得到函數(shù)g(A)=2cos2A的圖象?若存在,求出向量
p
的坐標;若不存在,請說明理由.

查看答案和解析>>

已知A、B、C為△ABC的三個內(nèi)角,設(shè)f(A,B)=sin22A+cos22B-
3
sin2A-cos2B+2

(1)當f(A,B)取得最小值時,求C的大;
(2)當C=
π
2
時,記h(A)=f(A,B),試求h(A)的表達式及定義域;
(3)在(2)的條件下,是否存在向量
p
,使得函數(shù)h(A)的圖象按向量
p
平移后得到函數(shù)g(A)=2cos2A的圖象?若存在,求出向量
p
的坐標;若不存在,請說明理由.

查看答案和解析>>

解答題:

(理)已知AB、C為△ABC的三個內(nèi)角,設(shè)

(1)

f(AB)取得最小值時,求C的大小;

(2)

時,記h(A)=f(AB),試求h(A)的表達式及定義域;

(3)

在(2)的條件下,是否存在向量p,使得函數(shù)h(A)的圖象按向量p平移后得

到函數(shù)的圖象?若存在,求出向量p的坐標;若不存在,請說明

理由.

查看答案和解析>>

在四邊形ABCD中 ,,,,其中
(1)若,試求之間的表達式;
(2)在(1)的條件下,若又有,試求的值及四邊形的面積。

查看答案和解析>>

在四邊形ABCD中 ,,,其中
(1)若,試求之間的表達式;
(2)在(1)的條件下,若又有,試求的值及四邊形的面積。

查看答案和解析>>

一、選擇題:

A卷:CCABD    BDCBB    AA

二、填空題:

(13)        (14)    (15)    (16)

三、解答題:

(17)解:

,知,又,由正弦定理,有

,∴,,……3分

  ……………5分

        

         …………8分

,,  ∴,

故所求函數(shù)為,函數(shù)的值域為……………10分

(18)解:

      記顧客購買一件產(chǎn)品,獲一等獎為事件,獲二等獎為事件,不獲獎為事件,則,

(Ⅰ)該顧客購買2件產(chǎn)品,中獎的概率

  ……………4分

  (Ⅱ)的可能值為0,20,40,100,120,200,其中

        ,,

         ,,

        ……………8分

的分布列為

                                                                ……………10分

的期望

(元)…………………………………………………………………12分

(19)解法一:

      (Ⅰ)取中點,連結(jié),則

       又, ∴,四邊形是平行四邊形,

       ∴,又,

       ∴ ……………………………………………………4分

      (Ⅱ)連結(jié)

        ∵,  ∴

       又平面平面,∴

      而,  ∴

     作,則,且,的中點。

,連結(jié),則

 于是為二面角的平面角。…………………………8分

,,∴,

在正方形中,作,則

,

,∴。

故二面角的大小為…………………………12分

 

 

 

 

 

 

 

 

 

 

    

解法二:如圖,以為原點,建立空間直角坐標系,使軸,、分別在軸、軸上。

(Ⅰ)由已知,,,,,,

, ,

, ∴,

,∴   ………………………………………4分

(Ⅱ)設(shè)為面的法向量,則,且

,

,取,則 ……………8分

為面的法向量,所以

因為二面角為銳角,所以其大小為…………………………12分

(20)解:

     (Ⅰ)  ……………………………………………………1分

      (1)當時,由,知,單調(diào)遞增
         而,則不恒成立…………………………3分

       (2)當時,令,得

           當時,單調(diào)遞增;時, ,單調(diào)遞減,處取得極大值。

   由于,所以,解得,即當且僅當恒成立。

綜上,所求的值為   …………………………7分

(Ⅱ)等價于,

下證這個不等式成立。

由(Ⅰ)知,即,……………9分

…………………………12分

(21)解:

(Ⅰ)曲線方程可寫為

設(shè),則,又設(shè)、、

曲線在點處的切線斜率,則切線方程為,

,亦即…………………………3分

分別將、坐標代入切線方程得,

,

,得

,  ①

,  ②

……………7分

,∴,

則由②式得。

從而曲線的方程為…………………………8分

(Ⅱ)軸與曲線、交點分別為、,此時……9分

不在軸上時,設(shè)直線方程為。

,則、在第一象限,

,得,由,

………………………………………11分

因為曲線都關(guān)于軸對稱,所以當時,仍有

綜上,題設(shè)的為定值…………………………12分

(22)解:

      (Ⅰ)由,且,得

時, ,解得;

時,,解得

猜想:……………………………………………………2分

用數(shù)學歸納法證明如下

(1)       當時,命題顯然成立!3分

(2)       假設(shè)當時命題成立,即,那么

         由,得

       

              于是,當時命題仍然成立………………………………………6分

根據(jù)(1)和(2),對任何,都有…………………………7分

(Ⅱ)當時,,且對于也成立。

因此,

對于,由,得

,……………10分

,

綜上,………………………………………12分

 

 

 


同步練習冊答案