(Ⅲ)求值. 23 查看更多

 

題目列表(包括答案和解析)

請按照題號在各題的答題區(qū)域(黑色線框)內作答,超出答題區(qū)域書寫的答案無效。

參考公式:

樣本數據,,,的標準差

         其中為樣本平均數

柱體體積公式

   

其中為底面面積,為高

 

錐體體積公式

   

其中為底面面積,為高

球的表面積和體積公式

,

其中為球的半徑

 
 


第Ⅰ卷

一、選擇題:本大題共12小題,每小題5分,滿分60分。在每小題給出的四個選項中,只有一項是符合題目要求的。

1.已知函數的定義域為的定義域為,則

                空集

2.已知復數,則它的共軛復數等于

                                  

3.設變量、滿足線性約束條件,則目標函數的最小值為

6               7              8                  23

查看答案和解析>>

一、選擇題

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

B

B

A

B

D

B

C

C

A

B

C

A

C

D

C

 

二、填空題

16.;17.;18等邊三角形;19.3;20.①②④

三、解答題

21解(I)由題意及正弦定理,得  ①,

  ②,………………1分

兩式相減,得.  …………………2分

(II)由的面積,得,……4分

由余弦定理,得                            ……………5分

所以. …………6分

22 .解:(Ⅰ)      ……2分

(Ⅱ)   

∴數列從第10項開始小于0                ……4分

(Ⅲ)

23解:(Ⅰ)由

即:

…………2分

…………4分

(Ⅱ)利用余弦定理可解得: 

      ,∵,故有…………7分

24解:(I)設等比數列{an}的公比為q, 則q≠0, a2= = , a4=a3q=2q

  所以 + 2q= ,     解得q1= , q2= 3,            …………1分

  當q1=, a1=18.所以 an=18×( )n-1= = 2×33-n.

  當q=3時, a1= ,所以an=×=2×3n-5.         …………3分

(II)由(I)及數列公比大于,得q=3,an=2×3n-5 ,…………4分

     ,

(常數),  

所以數列為首項為-4,公差為1的等差數列,……6分  

.     …………7分

25.解:(Ⅰ)  n=1時      ∴

n=2時         ∴

n=3時     ∴       …………2分

(Ⅱ)∵   ∴

兩式相減得:   即

也即

    ∴  即是首項為2,公差為4的等差數列

          …………5分

(Ⅲ)

   …………7分

對所有都成立   ∴  即

故m的最小值是10       …………8分

 

 


同步練習冊答案