分點坐標公式:若=,的坐標分別為(),(),(), 查看更多

 

題目列表(包括答案和解析)

(理)在平面直角坐標系xoy中,若在曲線C1的方程F(x,y)=0中,以(λx,λy)(λ為正實數)代替(x,y)得到曲線C2的方程F(λx,λy)=0,則稱曲線C1、C2關于原點“伸縮”,變換(x,y)→(λx,λy)稱為“伸縮變換”,λ稱為伸縮比.
(1)已知曲線C1的方程為,伸縮比λ=2,求C1關于原點“伸縮變換”后所得曲線C2的方程;
(2)射線l的方程,如果橢圓C1經“伸縮變換”后得到橢圓C2,若射線l與橢圓C1、C2分別交于兩點A、B,且,求橢圓C2的方程;
(3)對拋物線C1:y2=2p1x,作變換(x,y)→(λ1x,λ1y),得拋物線C2:y2=2p2x;對C2作變換(x,y)→(λ2x,λ2y)得拋物線C3:y2=2p3x,如此進行下去,對拋物線Cn:y2=2pnx作變換(x,y)→(λnx,λny),得拋物線Cn+1:y2=2pn+1x,….若,求數列{pn}的通項公式pn

查看答案和解析>>

(理)在平面直角坐標系xoy中,若在曲線C1的方程F(x,y)=0中,以(λx,λy)(λ為正實數)代替(x,y)得到曲線C2的方程F(λx,λy)=0,則稱曲線C1、C2關于原點“伸縮”,變換(x,y)→(λx,λy)稱為“伸縮變換”,λ稱為伸縮比.
(1)已知曲線C1的方程為,伸縮比λ=2,求C1關于原點“伸縮變換”后所得曲線C2的方程;
(2)射線l的方程,如果橢圓C1經“伸縮變換”后得到橢圓C2,若射線l與橢圓C1、C2分別交于兩點A、B,且,求橢圓C2的方程;
(3)對拋物線C1:y2=2p1x,作變換(x,y)→(λ1x,λ1y),得拋物線C2:y2=2p2x;對C2作變換(x,y)→(λ2x,λ2y)得拋物線C3:y2=2p3x,如此進行下去,對拋物線Cn:y2=2pnx作變換(x,y)→(λnx,λny),得拋物線Cn+1:y2=2pn+1x,….若,求數列{pn}的通項公式pn

查看答案和解析>>

(理)在平面直角坐標系xoy中,若在曲線C1的方程F(x,y)=0中,以(λx,λy)(λ為正實數)代替(x,y)得到曲線C2的方程F(λx,λy)=0,則稱曲線C1、C2關于原點“伸縮”,變換(x,y)→(λx,λy)稱為“伸縮變換”,λ稱為伸縮比.
(1)已知曲線C1的方程為,伸縮比λ=2,求C1關于原點“伸縮變換”后所得曲線C2的方程;
(2)射線l的方程,如果橢圓C1經“伸縮變換”后得到橢圓C2,若射線l與橢圓C1、C2分別交于兩點A、B,且,求橢圓C2的方程;
(3)對拋物線C1:y2=2p1x,作變換(x,y)→(λ1x,λ1y),得拋物線C2:y2=2p2x;對C2作變換(x,y)→(λ2x,λ2y)得拋物線C3:y2=2p3x,如此進行下去,對拋物線Cn:y2=2pnx作變換(x,y)→(λnx,λny),得拋物線Cn+1:y2=2pn+1x,….若,求數列{pn}的通項公式pn

查看答案和解析>>

(理)在平面直角坐標系xoy中,若在曲線C1的方程F(x,y)=0中,以(λx,λy)(λ為正實數)代替(x,y)得到曲線C2的方程F(λx,λy)=0,則稱曲線C1、C2關于原點“伸縮”,變換(x,y)→(λx,λy)稱為“伸縮變換”,λ稱為伸縮比.
(1)已知曲線C1的方程為,伸縮比λ=2,求C1關于原點“伸縮變換”后所得曲線C2的方程;
(2)射線l的方程,如果橢圓C1經“伸縮變換”后得到橢圓C2,若射線l與橢圓C1、C2分別交于兩點A、B,且,求橢圓C2的方程;
(3)對拋物線C1:y2=2p1x,作變換(x,y)→(λ1x,λ1y),得拋物線C2:y2=2p2x;對C2作變換(x,y)→(λ2x,λ2y)得拋物線C3:y2=2p3x,如此進行下去,對拋物線Cn:y2=2pnx作變換(x,y)→(λnx,λny),得拋物線Cn+1:y2=2pn+1x,….若,求數列{pn}的通項公式pn

查看答案和解析>>

(2011•順義區(qū)二模)對于定義域分別為M,N的函數y=f(x),y=g(x),規(guī)定:
函數h(x)=
f(x)•g(x),當x∈M且x∈N
f(x),當x∈M且x∉N
g(x),當x∉M且x∈N

(1)若函數f(x)=
1
x+1
,g(x)=x2+2x+2,x∈R
,求函數h(x)的取值集合;
(2)若f(x)=1,g(x)=x2+2x+2,設bn為曲線y=h(x)在點(an,h(an))處切線的斜率;而{an}是等差數列,公差為1(n∈N*),點P1為直線l:2x-y+2=0與x軸的交點,點Pn的坐標為(an,bn).求證:
1
|P1P2|2
+
1
|P1P3|2
+…+
1
|P1Pn|2
2
5
;
(3)若g(x)=f(x+α),其中α是常數,且α∈[0,2π],請問,是否存在一個定義域為R的函數y=f(x)及一個α的值,使得h(x)=cosx,若存在請寫出一個f(x)的解析式及一個α的值,若不存在請說明理由.

查看答案和解析>>


同步練習冊答案