從而證得:. 查看更多

 

題目列表(包括答案和解析)

用數(shù)學(xué)歸納法證明“1-
1
2
+
1
3
-
1
4
+…+
1
2n-1
-
1
2n
=
1
n+1
+
1
n+2
+…+
1
2n
”時(shí),由n=k的假設(shè)證明n=k+1時(shí),如果從等式左邊證明右邊,則必須證得右邊為(  )

查看答案和解析>>

(2013•泉州模擬)已知a<b,則在下列的一段推理過程中,錯(cuò)誤的推理步驟有
.(填上所有錯(cuò)誤步驟的序號)
∵a<b,∴a+a<b+a,即2a<b+a,…①
∴2a-2b<b+a-2b,即2(a-b)<a-b,…②
∴2(a-b)•(a-b)<(a-b)•(a-b),即2(a-b)2<(a-b)2,…③
∵(a-b)2>0,∴可證得 2<1.…④

查看答案和解析>>

(2013•棗莊二模)一名籃球運(yùn)動(dòng)員在5場比賽中的得分為14,16,21,24,25,則這組數(shù)據(jù)的平均數(shù)與標(biāo)準(zhǔn)差分別為(  )

查看答案和解析>>

已知數(shù)列的前項(xiàng)和為,且 (N*),其中

(Ⅰ) 求的通項(xiàng)公式;

(Ⅱ) 設(shè) (N*).

①證明: ;

② 求證:.

【解析】本試題主要考查了數(shù)列的通項(xiàng)公式的求解和運(yùn)用。運(yùn)用關(guān)系式,表示通項(xiàng)公式,然后得到第一問,第二問中利用放縮法得到,②由于,

所以利用放縮法,從此得到結(jié)論。

解:(Ⅰ)當(dāng)時(shí),由.  ……2分

若存在,

從而有,與矛盾,所以.

從而由.  ……6分

 (Ⅱ)①證明:

證法一:∵

 

.…………10分

證法二:,下同證法一.           ……10分

證法三:(利用對偶式)設(shè),,

.又,也即,所以,也即,又因?yàn)?img src="http://thumb.1010pic.com/pic6/res/gzsx/web/STSource/2012061921381634452104/SYS201206192140215789581034_ST.files/image037.png">,所以.即

                    ………10分

證法四:(數(shù)學(xué)歸納法)①當(dāng)時(shí), ,命題成立;

   ②假設(shè)時(shí),命題成立,即,

   則當(dāng)時(shí),

    即

故當(dāng)時(shí),命題成立.

綜上可知,對一切非零自然數(shù),不等式②成立.           ………………10分

②由于,

所以,

從而.

也即

 

查看答案和解析>>

用數(shù)學(xué)歸納法證明“”時(shí),

   由的假設(shè)證明時(shí),如果從等式左邊證明右邊,則必須證得右邊為(    )

    A、           B、

    C、           D、

 

查看答案和解析>>


同步練習(xí)冊答案