常用邏輯用語 (1)命題及其關系①理解命題的概念. 查看更多

 

題目列表(包括答案和解析)

對于任意實數(shù)x,符號[x]表示不超過x的最大整數(shù),如[4.3]=4、[-2.3]=-3、[4]=4,函數(shù)f(x)=[x]叫做“取整函數(shù)”,也叫做高斯(Gauss)函數(shù).這個函數(shù)在數(shù)學本身和生產(chǎn)實踐中都有廣泛的應用.
從函數(shù)f(x)=[x]的定義可以得到下列性質(zhì):x-1<[x]≤x<[x+1];與函數(shù)f(x)=[x]有關的另一個函數(shù)是g(x)={x},它的定義是{x}=x-[x],函數(shù)g(x)={x}叫做“取零函數(shù)”,這也是一個常用函數(shù).
(1)寫出f(5.2)的值及g(x)的值域;
(2)若F(n)=f(log2n)(1≤n≤210,n∈N),寫出F(x)的解析式;
(3)求F(1)+F(2)+F(3)+…+F(16)的值.

查看答案和解析>>

對于任意實數(shù)x,符號[x]表示不超過x的最大整數(shù),如[4.3]=4、[-2.3]=-3、[4]=4,函數(shù)f(x)=[x]叫做“取整函數(shù)”,也叫做高斯(Gauss)函數(shù).這個函數(shù)在數(shù)學本身和生產(chǎn)實踐中都有廣泛的應用.
從函數(shù)f(x)=[x]的定義可以得到下列性質(zhì):x-1<[x]≤x<[x+1];與函數(shù)f(x)=[x]有關的另一個函數(shù)是g(x)={x},它的定義是{x}=x-[x],函數(shù)g(x)={x}叫做“取零函數(shù)”,這也是一個常用函數(shù).
(1)寫出f(5.2)的值及g(x)的值域;
(2)若F(n)=f(log2n)(1≤n≤210,n∈N),寫出F(x)的解析式;
(3)求F(1)+F(2)+F(3)+…+F(16)的值.

查看答案和解析>>

對于任意實數(shù)x,符號[x]表示不超過x的最大整數(shù),如[4.3]=4、[-2.3]=-3、[4]=4,函數(shù)f(x)=[x]叫做“取整函數(shù)”,也叫做高斯(Gauss)函數(shù).這個函數(shù)在數(shù)學本身和生產(chǎn)實踐中都有廣泛的應用.
從函數(shù)f(x)=[x]的定義可以得到下列性質(zhì):x-1<[x]≤x<[x+1];與函數(shù)f(x)=[x]有關的另一個函數(shù)是g(x)={x},它的定義是{x}=x-[x],函數(shù)g(x)={x}叫做“取零函數(shù)”,這也是一個常用函數(shù).
(1)寫出f(5.2)的值及g(x)的值域;
(2)若F(n)=f(log2n)(1≤n≤210,n∈N),寫出F(x)的解析式;
(3)求F(1)+F(2)+F(3)+…+F(16)的值.

查看答案和解析>>

對于任意實數(shù)x,符號[x]表示不超過x的最大整數(shù),如[4.3]=4、[-2.3]=-3、[4]=4,函數(shù)f(x)=[x]叫做“取整函數(shù)”,也叫做高斯(Gauss)函數(shù).這個函數(shù)在數(shù)學本身和生產(chǎn)實踐中都有廣泛的應用.
從函數(shù)f(x)=[x]的定義可以得到下列性質(zhì):x-1<[x]≤x<[x+1];與函數(shù)f(x)=[x]有關的另一個函數(shù)是g(x)={x},它的定義是{x}=x-[x],函數(shù)g(x)={x}叫做“取零函數(shù)”,這也是一個常用函數(shù).
(1)寫出f(5.2)的值及g(x)的值域;
(2)若F(n)=f(log2n)(1≤n≤210,n∈N),寫出F(x)的解析式;
(3)求F(1)+F(2)+F(3)+…+F(16)的值.

查看答案和解析>>

古希臘人常用小石子在沙灘上擺成各種形狀來研究數(shù),例如:精英家教網(wǎng)
他們研究過圖1中的1,3,6,10,…,由于這些數(shù)能夠表示成三角形,將其稱為三角形數(shù);類似地,稱圖2中的1,4,9,16…這樣的數(shù)成為正方形數(shù).下列數(shù)中既是三角形數(shù)又是正方形數(shù)的是(  )
A、289B、1024C、1225D、1378

查看答案和解析>>


同步練習冊答案