(2)設(shè)Q是橢圓C上的一點(diǎn).過(guò)Q的直線l交x軸于點(diǎn).較y軸于點(diǎn)M.若.求直線l的方程. 查看更多

 

題目列表(包括答案和解析)

橢圓C:=1(a>b>0)的兩個(gè)焦點(diǎn)分別為F1(﹣c,0),F(xiàn)2(c,0),M是橢圓短軸的一個(gè)端點(diǎn),且滿足=0,點(diǎn)N( 0,3 )到橢圓上的點(diǎn)的最遠(yuǎn)距離為5
(1)求橢圓C的方程
(2)設(shè)斜率為k(k≠0)的直線l與橢圓C相交于不同的兩點(diǎn)A、B,Q為AB的中點(diǎn),;問(wèn)A、B兩點(diǎn)能否關(guān)于過(guò)點(diǎn)P、Q的直線對(duì)稱(chēng)?若能,求出k的取值范圍;若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

橢圓C:=1(a>b>0)的兩個(gè)焦點(diǎn)分別為F1(﹣c,0),F(xiàn)2(c,0),M是橢圓短軸的一個(gè)端點(diǎn),且滿足=0,點(diǎn)N( 0,3 )到橢圓上的點(diǎn)的最遠(yuǎn)距離為5
(1)求橢圓C的方程
(2)設(shè)斜率為k(k≠0)的直線l與橢圓C相交于不同的兩點(diǎn)A、B,Q為AB的中點(diǎn),;問(wèn)A、B兩點(diǎn)能否關(guān)于過(guò)點(diǎn)P、Q的直線對(duì)稱(chēng)?若能,求出k的取值范圍;若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

設(shè)橢圓C:
x2
λ+1
+y2=1
(λ>0)的兩焦點(diǎn)是F1,F(xiàn)2,且橢圓上存在點(diǎn)P,使
PF1
PF2
=0

(1)求實(shí)數(shù)λ的取值范圍;
(2)若直線l:x-y+2=0與橢圓C存在一公共點(diǎn)M,使得|MF1|+|MF2|取得最小值,求此最小值及此時(shí)橢圓的方程.
(3)在條件(2)下的橢圓方程,是否存在斜率為k(k≠0)的直線?,與橢圓交于不同的兩點(diǎn)A、B,滿足
AQ
=
QB
,且使得過(guò)點(diǎn)Q,N(0,-1)兩點(diǎn)的直線NQ滿足
NQ
AB
=0?若存在,求出k的取值范圍;若不存在,說(shuō)明理由.

查看答案和解析>>

若橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率e為
3
5
,且橢圓C的一個(gè)焦點(diǎn)與拋物線y2=-12x的焦點(diǎn)重合.
(1)求橢圓C的方程;
(2)設(shè)點(diǎn)M(2,0),點(diǎn)Q是橢圓上一點(diǎn),當(dāng)|MQ|最小時(shí),試求點(diǎn)Q的坐標(biāo);
(3)設(shè)P(m,0)為橢圓C長(zhǎng)軸(含端點(diǎn))上的一個(gè)動(dòng)點(diǎn),過(guò)P點(diǎn)斜率為k的直線l交橢圓與A,B兩點(diǎn),若|PA|2+|PB|2的值僅依賴(lài)于k而與m無(wú)關(guān),求k的值.

查看答案和解析>>

已知橢圓C的一個(gè)焦點(diǎn)是(10),兩個(gè)焦點(diǎn)與短軸的一個(gè)端點(diǎn)構(gòu)成等邊三角形.

1)求橢圓C的方程;

2)過(guò)點(diǎn)Q4,0)且不與坐標(biāo)軸垂直的直線l交橢圓CA、B兩點(diǎn),設(shè)點(diǎn)A關(guān)于x軸的

對(duì)稱(chēng)點(diǎn)為A1.求證:直線A1B過(guò)x軸上一定點(diǎn),并求出此定點(diǎn)坐標(biāo).

 

查看答案和解析>>

1、A   2、B   3、B   4、D    5、C    6、C

7、    8、     9、0      10、 

11、【解】(1)

∴NP為AM的垂直平分線,∴|NA|=|NM|.…………………………2分

∴動(dòng)點(diǎn)N的軌跡是以點(diǎn)C(-1,0),A(1,0)為焦點(diǎn)的橢圓.

且橢圓長(zhǎng)軸長(zhǎng)為焦距2c=2.   ……………5分

∴曲線E的方程為………………6分

(2)當(dāng)直線GH斜率存在時(shí),

設(shè)直線GH方程為

設(shè)……………………8分

,

……………………10分

又當(dāng)直線GH斜率不存在,方程為

……………………………………12分

12、【解】(1)由題設(shè)知

由于,則有,所以點(diǎn)A的坐標(biāo)為,

所在直線方程為, ………………………………3分

所以坐標(biāo)原點(diǎn)O到直線的距離為

,所以,解得,

所求橢圓的方程為.……………………………………………5分

(2)由題意知直線l的斜率存在,設(shè)直線l的方程為,則有,

設(shè),由于,

,解得     …………………8分

又Q在橢圓C上,得

解得, …………………………………………………………………………10分

故直線l的方程為,

.   ……………………………………………12分

 


同步練習(xí)冊(cè)答案