題目列表(包括答案和解析)
C.選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系下,已知圓O:和直線,
(1)求圓O和直線的直角坐標(biāo)方程;(2)當(dāng)時(shí),求直線與圓O公共點(diǎn)的一個(gè)極坐標(biāo).
D.選修4-5:不等式證明選講
對(duì)于任意實(shí)數(shù)和,不等式恒成立,試求實(shí)數(shù)的取值范圍.
C
[解析] 由基本不等式,得ab≤==-ab,所以ab≤,故B錯(cuò);+==≥4,故A錯(cuò);由基本不等式得≤=,即+≤,故C正確;a2+b2=(a+b)2-2ab=1-2ab≥1-2×=,故D錯(cuò).故選C.
.定義域?yàn)?/span>R的函數(shù)滿足,且當(dāng)時(shí),,則當(dāng)時(shí),的最小值為( )
(A) (B) (C) (D)
.過(guò)點(diǎn)作圓的弦,其中弦長(zhǎng)為整數(shù)的共有 ( )
A.16條 B. 17條 C. 32條 D. 34條
坐標(biāo)系與參數(shù)方程 [基礎(chǔ)訓(xùn)練A組]
一、選擇題
1.D
2.B 轉(zhuǎn)化為普通方程:,當(dāng)時(shí),
3.C 轉(zhuǎn)化為普通方程:,但是
4.C
5.C 都是極坐標(biāo)
6.C
則或
二、填空題
1.
2.
3. 將代入得,則,而,得
4. 直線為,圓心到直線的距離,弦長(zhǎng)的一半為,得弦長(zhǎng)為
5. ,取
三、解答題
1.解:(1)設(shè)圓的參數(shù)方程為,
(2)
2.解:將代入得,
得,而,得
3.解:設(shè)橢圓的參數(shù)方程為,
當(dāng)時(shí),,此時(shí)所求點(diǎn)為。
坐標(biāo)系與參數(shù)方程 [綜合訓(xùn)練B組]
一、選擇題
1.C 距離為
2.D 表示一條平行于軸的直線,而,所以表示兩條射線
3.D ,得,
中點(diǎn)為
4.A 圓心為
5.D
6.C ,把直線代入
得
,弦長(zhǎng)為
二、填空題
1. 而,
即
2. ,對(duì)于任何都成立,則
3. 橢圓為,設(shè),
4. 即
5. ,當(dāng)時(shí),;當(dāng)時(shí),;
而,即,得
三、解答題
1.解:顯然,則
即
得,即
2.解:設(shè),則
即,
當(dāng)時(shí),;
當(dāng)時(shí),。
3.解:(1)直線的參數(shù)方程為,即
(2)把直線代入
得
,則點(diǎn)到兩點(diǎn)的距離之積為
坐標(biāo)系與參數(shù)方程 [提高訓(xùn)練C組]
一、選擇題
1.D ,取非零實(shí)數(shù),而A,B,C中的的范圍有各自的限制
2.B 當(dāng)時(shí),,而,即,得與軸的交點(diǎn)為;
當(dāng)時(shí),,而,即,得與軸的交點(diǎn)為
3.B ,把直線代入
得
,弦長(zhǎng)為
4.C 拋物線為,準(zhǔn)線為,為到準(zhǔn)線的距離,即為
5.D ,為兩條相交直線
6.A 的普通方程為,的普通方程為
圓與直線顯然相切
二、填空題
1. 顯然線段垂直于拋物線的對(duì)稱軸。即軸,
2.,或
3. 由得
4. 圓心分別為和
5.,或 直線為,圓為,作出圖形,相切時(shí),
易知傾斜角為,或
三、解答題
1.解:(1)當(dāng)時(shí),,即;
當(dāng)時(shí),
而,即
(2)當(dāng)時(shí),,,即;
當(dāng)時(shí),,,即;
當(dāng)時(shí),得,即
得
即。
2.解:設(shè)直線為,代入曲線并整理得
則
所以當(dāng)時(shí),即,的最小值為,此時(shí)。
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com