17.已知.且對任意實(shí)數(shù)x恒成立. (Ⅰ)求的值, (Ⅱ)求函數(shù)的單調(diào)增區(qū)間. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分) 已知點(diǎn)A(1,1)是橢圓上一點(diǎn),F(xiàn)1,F(xiàn)2是橢圓的兩焦點(diǎn),且滿足   (I)求橢圓的兩焦點(diǎn)坐標(biāo);   (II)設(shè)點(diǎn)B是橢圓上任意一點(diǎn),如果|AB|最大時,求證A、B兩點(diǎn)關(guān)于原點(diǎn)O不對稱;

查看答案和解析>>

(本小題滿分12分)已知函數(shù)

(1)若,試確定函數(shù)的單調(diào)區(qū)間;(2)若,且對于任意,恒成立,試確定實(shí)數(shù)的取值范圍;(3)設(shè)函數(shù),求證:

查看答案和解析>>

(本小題滿分12分)已知單調(diào)遞增的等比數(shù)列{an}滿足:a2+a3+a4=28,且a3+2是a2,a4的等差中項。

(1)求數(shù)列{an}的通項公式;

(2)若bn=,sn=b1+b2+┉+bn,對任意正整數(shù)n,sn+(n+m)an+1<0恒成立,試求m的取值范圍。

查看答案和解析>>

(本小題滿分12分)已知函數(shù).

(1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間和極值;

(2)當(dāng)時,若對任意,均有,求實(shí)數(shù)的取值范圍;

(3)若,對任意、,且,試比較 的大小.

查看答案和解析>>

(本小題滿分12分)已知函數(shù),點(diǎn)是函數(shù)圖像上任意一點(diǎn),點(diǎn)關(guān)于原點(diǎn)的對稱點(diǎn)的軌跡是函數(shù)的圖像.   (Ⅰ)當(dāng)時,解關(guān)于的不等式;  (Ⅱ)當(dāng),且時,總有恒成立,求的取值范圍.

查看答案和解析>>

一、BDCBA,BDCDC,BB

二、13.       14.8;        15.;         16. ③④

三、17、

解:(Ⅰ)

                  ……………2分

    由題意知對任意實(shí)數(shù)x恒成立,

    得,

………………………………………………………6分

   (Ⅱ)由(Ⅰ)知

    由,解得

    所以,的單調(diào)增區(qū)間為……………………12分

18、

解:(Ⅰ)證明取SC的中點(diǎn)R,連QR, DR.。

由題意知:PD∥BC且PD=BC;

QR∥BC且QP=BC,

QR∥PD且QR=PD。

PQ∥PR,又PQ面SCD,PQ∥面SCD.                               …………6分

(Ⅱ)法一:

                …………12分

(Ⅱ)法二:以P為坐標(biāo)原點(diǎn),PA為x軸,PB為y軸,PS為z軸建立空間直角坐標(biāo)系,則S(),B(),C(),Q(),

面PBC的法向量為(),設(shè)為面PQC的法向量,

COS

              …………12分

19、解

     

設(shè)A,B兩點(diǎn)的坐標(biāo)為()、()則

(Ⅰ)經(jīng)過A、B兩點(diǎn)的直線方程為

由得:

令得:                                        

    從而

(否則,有一個為零向量)

  代入(1)得  

始終經(jīng)過這個定點(diǎn)                   …………………(6分)

(Ⅱ)設(shè)AB中點(diǎn)的坐標(biāo)為(),則

AB的中點(diǎn)到直線的距離d為:

因為d的最小值為        ……………(12分)

20、解:(Ⅰ)密碼中不同數(shù)字的個數(shù)為2的事件為密碼中只有兩個數(shù)字,注意到密碼的第1,2列分別總是1,2,即只能取表格第1,2列中的數(shù)字作為密碼.

     …………………………………………………………………4分

   (Ⅱ)由題意可知,ξ的取值為2,3,4三種情形.

    若ξ= 3,注意表格的第一排總含有數(shù)字1,第二排總含有數(shù)字2則密碼中只可能取數(shù)字1,2,3或1,2,4.   

    若

   (或用求得). ………………………………………………8分

    的分布列為:

ξ

2

3

4

p

     ……………………………………………12分

21、

(Ⅰ)

時,,即

當(dāng)時,

在上是減函數(shù)的充要條件為           ………(4分)

(Ⅱ)由(Ⅰ)知,當(dāng)時為減函數(shù),的最大值為;

當(dāng)時,

當(dāng)時,當(dāng)時

即在上是增函數(shù),在上是減函數(shù),時取最大值,最大值為

    即                ………………(9分)

(Ⅲ)在(Ⅰ)中取,即

由(Ⅰ)知在上是減函數(shù)

,即

,解得:或

故所求不等式的解集為[     ……………(13分)

22、

解::⑴ 

,即為的表達(dá)式。        (6分)

⑵,,又()

要使成立,只要,即,

即為所求。

故有

                                  (13分)

 


同步練習(xí)冊答案