題目列表(包括答案和解析)
(本小題滿分12分)一個口袋中裝有大小相同的2個紅球,3個黑球和4個白球,從口袋中一次摸出一個球,摸出的球不再放回.
(Ⅰ)連續(xù)摸球2次,求第一次摸出黑球,第二次摸出白球的概率;
(Ⅱ)如果摸出紅球,則停止摸球,求摸球次數(shù)不超過3次的概率.
(本小題滿分12分)一個口袋中裝有大小相同的2個紅球,3個黑球和4個白球,從口袋中一次摸出一個球,摸出的球不再放回.
(Ⅰ)連續(xù)摸球2次,求第一次摸出黑球,第二次摸出白球的概率;
(Ⅱ)如果摸出紅球,則停止摸球,求摸球次數(shù)不超過3次的概率.
(本小題滿分12分)
一個口袋中裝有大小相同的2個白球和3個黑球.
(1)采取放回抽樣方式,從中摸出兩個球,求兩球恰好顏色不同的概率;
(2)采取不放回抽樣方式,從中摸出兩個球,求摸得白球的個數(shù)的分布列與期望。
(本小題滿分12分)
一個口袋中裝有大小相同的2個白球和3個黑球.
(1)采取放回抽樣方式,從中摸出兩個球,求兩球恰好顏色不同的概率;
(2)采取不放回抽樣方式,從中摸出兩個球,求摸得白球的個數(shù)的分布列與期望。
(本小題滿分12分)
一個口袋中裝有大小相同的個紅球(且)和個白球,一次摸獎從中摸兩個球,兩個球的顏色不同則為中獎。
(Ⅰ)試用表示一次摸獎中獎的概率;
(Ⅱ)記從口袋中三次摸獎(每次摸獎后放回)恰有一次中獎的概率為,求的最大值?
(Ⅲ)在(Ⅱ)的條件下,將個白球全部取出后,對剩下的個紅球全部作如下標記:記上號的有個(),其余的紅球記上號,現(xiàn)從袋中任取一球。表示所取球的標號,求的分布列、期望和方差。
一、選擇題:
1.D 2.A 3.B 4.B 5.A 6.C 7.D 8.C 9.B 10.B 11.C 12.B
|