13. 查看更多

 

題目列表(包括答案和解析)

1、集合A={-1,0,1},B={-2,-1,0},則A∪B=
{-2,-1,0,1}

查看答案和解析>>

2、命題“存在x∈R,使得x2+2x+5=0”的否定是
對(duì)任意x∈R,都有x2+2x+5≠0

查看答案和解析>>

3、在等差數(shù)列{an}中,a2+a5=19,S5=40,則a10
29

查看答案和解析>>

5、函數(shù)y=a2-x+1(a>0,a≠1)的圖象恒過(guò)定點(diǎn)P,則點(diǎn)P的坐標(biāo)為
(2,2)

查看答案和解析>>

 

一、選擇題

1―5BABAB  6―10DBABA  11―12CC

    20081006

    13.      14.

    15.        16. f()<f(1)< f(

    三、解答題

    17.解:(Ⅰ),    

     

    =是奇函數(shù),,

       (Ⅱ)由(Ⅰ)得

    從而上增函數(shù),

    上減函數(shù),

    所以時(shí)取得極大值,極大值為時(shí)取得極小值,極小值為

    18.解:(Ⅰ)設(shè)A隊(duì)得分為2分的事件為,

    對(duì)陣隊(duì)員

    隊(duì)隊(duì)員勝

    隊(duì)隊(duì)員負(fù)

    對(duì)

    對(duì)

    對(duì)

     

     

     

     

     

     

     

     

     

     

     

     

       

     

    0

    1

    2

    3

    的分布列為:                          

                                                              ………… 8分

    于是 , …………9分

    ,    ∴     ………… 11分

    由于, 故B隊(duì)比A隊(duì)實(shí)力較強(qiáng).    …………12分

    19.解:(1)由   ∴……………2分

    由已知得,  

    .  從而.……………4分

       (2) 由(1)知,,

    值域?yàn)?sub>.…………6分

    ∴由已知得:  于是……………8分

    20.解:(Ⅰ),

    化為,    或 

    解得,原不等式的解集為

       (Ⅱ),

    ①當(dāng)時(shí),在區(qū)間[]上單調(diào)遞增,從而  

    ②當(dāng)時(shí),對(duì)稱(chēng)軸的方程為,依題意得  解得

    綜合①②得

    21.解:(Ⅰ)

    =0 得

    解不等式,得,

    解不等式,

    從而的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是

       (Ⅱ)將兩邊取對(duì)數(shù)得,

    因?yàn)?sub>,從而

    由(Ⅰ)得當(dāng)時(shí)

    要使對(duì)任意成立,當(dāng)且僅當(dāng),得

     

    22.(Ⅰ)解:是二次函數(shù),且的解集是,

    *可設(shè)

    在區(qū)間上的最大值是

    由已知,得

       (Ⅱ)方程等價(jià)于方程

    設(shè),

    當(dāng)時(shí),是減函數(shù);

    當(dāng)時(shí),是增函數(shù).

    ,

    *方程在區(qū)間內(nèi)分別有惟一實(shí)數(shù)根,

    而在區(qū)間內(nèi)沒(méi)有實(shí)數(shù)根.

    所以存在惟一的自然數(shù)

    使得方程在區(qū)間內(nèi)有且只有兩個(gè)不同的實(shí)數(shù)根.

     

     

     

     

     

    www.ks5u.com

     

     

     


    同步練習(xí)冊(cè)答案