(Ⅰ)求證:; 查看更多

 

題目列表(包括答案和解析)

(Ⅰ)求證
2
-
3
6
-
7

(Ⅱ)△ABC的三邊a,b,c的倒數(shù)成等差數(shù)列,求證B<
π
2

查看答案和解析>>

(Ⅰ)求證:
sinx
1-cosx
=
1+cosx
sinx
;
(Ⅱ)化簡:
tan(3π-α)
sin(π-α)sin(
3
2
π-α)
+
sin(2π-α)cos(α-
2
)
sin(
2
+α)cos(2π+α)

查看答案和解析>>

(Ⅰ)求證:
C
m
n
=
n
m
C
m-1
n-1

(Ⅱ)利用第(Ⅰ)問的結(jié)果證明Cn1+2Cn2+3Cn3+…+nCnn=n•2n-1;  
(Ⅲ)其實我們常借用構(gòu)造等式,對同一個量算兩次的方法來證明組合等式,譬如:(1+x)1+(1+x)2+(1+x)3+…+(1+x)n=
(1+x)[1-(1+x)n]
1-(1+x)
=
(1+x)n+1-(1+x)
x
;,由左邊可求得x2的系數(shù)為C22+C32+C42+…+Cn2,利用右式可得x2的系數(shù)為Cn+13,所以C22+C32+C42+…+Cn2=Cn+13.請利用此方法證明:(C2n02-(C2n12+(C2n22-(C2n32+…+(C2n2n2=(-1)nC2nn

查看答案和解析>>

(Ⅰ)求證數(shù)學公式;
(Ⅱ)△ABC的三邊a,b,c的倒數(shù)成等差數(shù)列,求證數(shù)學公式

查看答案和解析>>

(Ⅰ)求證:
sinx
1-cosx
=
1+cosx
sinx
;
(Ⅱ)化簡:
tan(3π-α)
sin(π-α)sin(
3
2
π-α)
+
sin(2π-α)cos(α-
2
)
sin(
2
+α)cos(2π+α)

查看答案和解析>>


同步練習冊答案