21. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)二次函數(shù)的圖象經(jīng)過三點(diǎn).

(1)求函數(shù)的解析式(2)求函數(shù)在區(qū)間上的最大值和最小值

查看答案和解析>>

(本小題滿分12分)已知等比數(shù)列{an}中, 

   (Ⅰ)求數(shù)列{an}的通項(xiàng)公式an

   (Ⅱ)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,證明:;

   (Ⅲ)設(shè),證明:對任意的正整數(shù)n、m,均有

查看答案和解析>>

(本小題滿分12分)已知函數(shù),其中a為常數(shù).

   (Ⅰ)若當(dāng)恒成立,求a的取值范圍;

   (Ⅱ)求的單調(diào)區(qū)間.

查看答案和解析>>

(本小題滿分12分)

甲、乙兩籃球運(yùn)動(dòng)員進(jìn)行定點(diǎn)投籃,每人各投4個(gè)球,甲投籃命中的概率為,乙投籃命中的概率為

   (Ⅰ)求甲至多命中2個(gè)且乙至少命中2個(gè)的概率;

   (Ⅱ)若規(guī)定每投籃一次命中得3分,未命中得-1分,求乙所得分?jǐn)?shù)η的概率分布和數(shù)學(xué)期望.

查看答案和解析>>

(本小題滿分12分)已知是橢圓的兩個(gè)焦點(diǎn),O為坐標(biāo)原點(diǎn),點(diǎn)在橢圓上,且,圓O是以為直徑的圓,直線與圓O相切,并且與橢圓交于不同的兩點(diǎn)A、B.

   (1)求橢圓的標(biāo)準(zhǔn)方程;w.w.w.k.s.5.u.c.o.m        

   (2)當(dāng)時(shí),求弦長|AB|的取值范圍.

查看答案和解析>>

 

一、選擇題(每小題5分,共60分)

2,4,6

二、填空題(每小題4分,共16分)

20080924

三、解答題:(本大題共6小題,共74分)

17.解:(Ⅰ)∵

  

∴函數(shù)的最小正周期  

(Ⅱ)∵,  ∴  

  

  

∴函數(shù)時(shí)的值域?yàn)閇-1,2]  

18.解:(Ⅰ)記“任取2個(gè)乒乓球,恰好取得1個(gè)黃色乒乓球”為事件A,則

    

(Ⅱ)記“第一次取得白色乒乓球時(shí),恰好已取出1個(gè)黃色乒乓球”為事件B;記“第一次取得白色乒乓球時(shí),恰好已取出2個(gè)黃色乒乓球”為事件C. 則

    

   

∵事件B與事件C是互斥事件,

∴第一次取得白色乒乓球時(shí),已取出的黃色乒乓球個(gè)數(shù)不少于1個(gè)的概率為

P(B+C)=P(B)+P(C)=   

19.解:(1)∵SD⊥AD,SD⊥AB,AD∩AB=A∴SD⊥平面ABCD,

又∵SD平面SBD,  ∴平面SDB⊥平面ABCD。

   (2)由(1)知平面SDB⊥平面ABCD,

BD為平面SDB與平面ABCD的交線,過點(diǎn)A作AE⊥DB于E,則AE⊥平面SDB,

      由三垂線定理的逆定理得 EF⊥SB,

      ∴∠AFE為二面角A―SB―D的平面角。

      在矩形ABCD中,設(shè)AD=a,則

      在Rt△SBC中,

      而在Rt△SAD中,SA=2a,又AB=2a,∴SB2=SA2+AB2,

      即△SAB為等腰直角三角形,且∠SAB為直角,

      故二面角A―SB―D的大小為  

      20.解:(Ⅰ)設(shè)等差數(shù)列{an}的公差為d,由題意

       

         

         (Ⅱ)∵  

       

      ∴數(shù)列{bn}的前n項(xiàng)和

            

       

      21.解:(Ⅰ)由題,得,設(shè)

        …………①

      在雙曲線上,則   …………②

      聯(lián)立①、②,解得    

      由題意,

      ∴點(diǎn)T的坐標(biāo)為(2,0)  

         (Ⅱ)設(shè)直線A1P與直線A2Q的交點(diǎn)M的坐標(biāo)為(x,y)

      由A1、P、M三點(diǎn)共線,得

         …………③ 

      由A2、Q、M三點(diǎn)共線,得

         …………④

      聯(lián)立③、④,解得    

      在雙曲線上,

      ∴軌跡E的方程為 

      22.解:(Ⅰ)設(shè)P(x,y)是函數(shù)圖象上的任意一點(diǎn),它在函數(shù)圖象上的對應(yīng)點(diǎn),則由平移公式,得  

          ∴   代入函數(shù)中,得

             

          ∴函數(shù)的表達(dá)式為  

        (Ⅱ)函數(shù)的對稱軸為

      ①當(dāng)時(shí),函數(shù)在[]上為增函數(shù),

         

      ②當(dāng)時(shí),

         

      ③當(dāng)時(shí),函數(shù)在[]上為減函數(shù),

      ,應(yīng)舍去     

      綜上所述,有   

       


      同步練習(xí)冊答案