(1)求證:數(shù)列是等比數(shù)列, 查看更多

 

題目列表(包括答案和解析)

如圖,點(diǎn)D在反比例函數(shù)y=
k
x
(k>0)上,點(diǎn)C在x軸的正半軸上且坐標(biāo)為(4,0),△ODC是以CO為斜邊的等腰直角三角形.
(1)求反比例函數(shù)的解析式;
精英家教網(wǎng)
(2)點(diǎn)B為橫坐標(biāo)為1的反比例函數(shù)圖象上的一點(diǎn),BA、BE分別垂直x軸和y軸,連接OB,將OABE沿OB折疊,使A點(diǎn)落在點(diǎn)A′處,A′B與y軸交于點(diǎn)F,求OF的長(zhǎng);
精英家教網(wǎng)
(3)直線y=-x+3交x軸于M點(diǎn),交y軸于N點(diǎn),點(diǎn)P是雙曲線y=
k
x
(k>0)上的一動(dòng)點(diǎn),PQ⊥x軸于Q點(diǎn),PR⊥y軸于R點(diǎn),PQ,PR與直線MN交于H,G兩點(diǎn).給出下列兩個(gè)結(jié)論:①△PGH的面積不變;②MG•NH的值不變,其中有且只有一個(gè)結(jié)論是正確的,請(qǐng)你選擇并證明求值.
精英家教網(wǎng)

查看答案和解析>>

如圖,點(diǎn)D在反比例函數(shù)y=數(shù)學(xué)公式(k>0)上,點(diǎn)C在x軸的正半軸上且坐標(biāo)為(4,0),△ODC是以CO為斜邊的等腰直角三角形.
(1)求反比例函數(shù)的解析式;

(2)點(diǎn)B為橫坐標(biāo)為1的反比例函數(shù)圖象上的一點(diǎn),BA、BE分別垂直x軸和y軸,連接OB,將OABE沿OB折疊,使A點(diǎn)落在點(diǎn)A′處,A′B與y軸交于點(diǎn)F,求OF的長(zhǎng);

(3)直線y=-x+3交x軸于M點(diǎn),交y軸于N點(diǎn),點(diǎn)P是雙曲線y=數(shù)學(xué)公式(k>0)上的一動(dòng)點(diǎn),PQ⊥x軸于Q點(diǎn),PR⊥y軸于R點(diǎn),PQ,PR與直線MN交于H,G兩點(diǎn).給出下列兩個(gè)結(jié)論:①△PGH的面積不變;②MG•NH的值不變,其中有且只有一個(gè)結(jié)論是正確的,請(qǐng)你選擇并證明求值.

查看答案和解析>>

如圖,點(diǎn)D在反比例函數(shù)y=
k
x
(k>0)上,點(diǎn)C在x軸的正半軸上且坐標(biāo)為(4,0),△ODC是以CO為斜邊的等腰直角三角形.
(1)求反比例函數(shù)的解析式;

(2)點(diǎn)B為橫坐標(biāo)為1的反比例函數(shù)圖象上的一點(diǎn),BA、BE分別垂直x軸和y軸,連接OB,將OABE沿OB折疊,使A點(diǎn)落在點(diǎn)A′處,A′B與y軸交于點(diǎn)F,求OF的長(zhǎng);

(3)直線y=-x+3交x軸于M點(diǎn),交y軸于N點(diǎn),點(diǎn)P是雙曲線y=
k
x
(k>0)上的一動(dòng)點(diǎn),PQ⊥x軸于Q點(diǎn),PR⊥y軸于R點(diǎn),PQ,PR與直線MN交于H,G兩點(diǎn).給出下列兩個(gè)結(jié)論:①△PGH的面積不變;②MG•NH的值不變,其中有且只有一個(gè)結(jié)論是正確的,請(qǐng)你選擇并證明求值.

查看答案和解析>>

閱讀材料并解答問(wèn)題:
我國(guó)是最早了解和應(yīng)用勾股定理的國(guó)家之一,古代印度、希臘、阿拉伯等許多國(guó)家也都很重視對(duì)勾股定理的研究和應(yīng)用,古希臘數(shù)學(xué)家畢達(dá)哥拉斯首先證明了勾股定理,在西方,勾股定理又稱為“畢達(dá)哥拉斯定理”.
關(guān)于勾股定理的研究還有一個(gè)很重要的內(nèi)容是勾股數(shù)組,在《幾何》課本中我們已經(jīng)了解到,“能夠成為直角三角形三條邊的三個(gè)正整數(shù)稱為勾股數(shù)”,以下是畢達(dá)哥拉斯等學(xué)派研究出的確定勾股數(shù)組的兩種方法:
方法1:若m為奇數(shù)(m≥3),則a=m,b=
1
2
(m2-1)和c=
1
2
(m2+1)是勾股數(shù).
方法2:若任取兩個(gè)正整數(shù)m和n(m>n),則a=m2-n2,b=2mn,c=m2+n2是勾股數(shù).
(1)在以上兩種方法中任選一種,證明以a,b,c為邊長(zhǎng)的△ABC是直角三角形;
(2)請(qǐng)根據(jù)方法1和方法2按規(guī)律填寫(xiě)下列表格:
精英家教網(wǎng)
(3)某園林管理處要在一塊綠地上植樹(shù),使之構(gòu)成如下圖所示的圖案景觀,該圖案由四個(gè)全等的直角三角形組成,要求每個(gè)三角形頂點(diǎn)處都植一棵樹(shù),各邊上相鄰兩棵樹(shù)之間的距離均為1米,如果每個(gè)三角形最短邊上都植6棵樹(shù),且每個(gè)三角形的各邊長(zhǎng)之比為5:12:13,那么這四個(gè)直角三角形的邊長(zhǎng)共需植樹(shù)
 
棵.
精英家教網(wǎng)

查看答案和解析>>

已知, BC∥OA,∠B=∠A=100°,試回答下列問(wèn)題:
如圖1所示,求證:OB∥AC.
(2)如圖2,若點(diǎn)E、F在線段BC上,且滿足∠FOC=∠AOC ,并且OE平分∠BOF.則∠EOC的度數(shù)等于__     _____;(在橫線上填上答案即可).
(3)在(2) 的條件下,若平行移動(dòng)AC,如圖3,那么∠OCB:∠OFB的值是否隨之發(fā)生變化?若變化,試說(shuō)明理由;若不變,求出這個(gè)比值.
(4)在(3)的條件下,如果平行移動(dòng)AC的過(guò)程中,若使∠OEB=∠OCA,此時(shí)∠OCA度數(shù)等于             .(在橫線上填上答案即可).  

查看答案和解析>>


同步練習(xí)冊(cè)答案