題目列表(包括答案和解析)
設橢圓 :()的一個頂點為,,分別是橢圓的左、右焦點,離心率 ,過橢圓右焦點 的直線 與橢圓 交于 , 兩點.
(1)求橢圓的方程;
(2)是否存在直線 ,使得 ,若存在,求出直線 的方程;若不存在,說明理由;
【解析】本試題主要考查了橢圓的方程的求解,以及直線與橢圓的位置關系的運用。(1)中橢圓的頂點為,即又因為,得到,然后求解得到橢圓方程(2)中,對直線分為兩種情況討論,當直線斜率存在時,當直線斜率不存在時,聯(lián)立方程組,結合得到結論。
解:(1)橢圓的頂點為,即
,解得, 橢圓的標準方程為 --------4分
(2)由題可知,直線與橢圓必相交.
①當直線斜率不存在時,經檢驗不合題意. --------5分
②當直線斜率存在時,設存在直線為,且,.
由得, ----------7分
,,
=
所以, ----------10分
故直線的方程為或
即或
3 |
3 |
| ||||
2 |
| ||||
2 |
某醫(yī)療研究所為了檢驗某種血清預防感冒的作用,把名使用血清的人與另外名未用血清的人一年中的感冒記錄作比較,提出假設:“這種血清不能起到預防感冒的作用”,利用列聯(lián)表計算得,經查對臨界值表知.
對此,四名同學做出了以下的判斷:
p:有的把握認為“這種血清能起到預防感冒的作用”
q:若某人未使用該血清,那么他在一年中有的可能性得感冒
r:這種血清預防感冒的有效率為
s:這種血清預防感冒的有效率為
則下列結論中,正確結論的序號是 .(把你認為正確的命題序號都填上)
(1) p∧﹁q ; (2)﹁p∧q ;
(3)(﹁p∧﹁q)∧(r∨s); (4)(p∨﹁r)∧(﹁q∨s)
有一道解三角形的題,因為紙張破損,在劃橫線地方有一個已知條件看不清.具體如下:在中角所對的邊長分別為,已知角,, ▲ ,求角.若已知正確答案為,且必須使用所有已知條件才能解得,請你寫出一個符合要求的已知條件.
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com