題目列表(包括答案和解析)
且當(dāng)或時,.當(dāng)時,. …………………………10分
結(jié)合圖象可知所求的取值范圍為. ……………………………………12分
17.解:(1)記“該選手能正確回答第輪問題”的事件為,
則.
該選手進入第四輪才被淘汰的概率:
.……………6分
(2)由題意的所有可能取值分別是1, 2, 3, 4,且
,
,
方法二: 連AC,BD交于O點,連GO,FO,EO.
∵E,F分別為PC,PD的中點,
∴//,同理//
又//AB,//
平面EFG//平面PAB.
又PA平面PAB,平面EFG.………………………………………4分
(2)由已知底面ABCD是正方形, .
又∵面ABCD,.
又,平面PCD,.
過點F作于,則.
連結(jié),則為直線與平面所成的角. …………………6分
由∽,得.在中求得.
而, ,.
.即動點的軌跡的方程為.…………4分
(2)設(shè)點,,.
三點共線,,即.
即,. ………………………………………6分
三點共線,,即.
,即.
=f(e)=1-=,得a=(舍去). …………………………………6分
③若即-e<a<-1,則在(1,)上為減函數(shù),在(,e)上為增函時數(shù).=f(-a)==,得.
綜上知a=-.……………………………………………………………………8分
(3)由,得.
令,則.
于是.由知.
在上單調(diào)遞減,從而.
所以在上單調(diào)遞減,于是
∴. ………………………………………………………8分
②,
即證:. …………………………………10分
先證:.
1°時,顯然成立.
2°假設(shè)時,.
則時,
,即當(dāng)時,也成立.
由1°2°知成立.
從而
. ………………………………………14分
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com