(2)求甲答對題數(shù)的數(shù)學(xué)期望. 查看更多

 

題目列表(包括答案和解析)

在一次數(shù)學(xué)與語文兩門功課的聯(lián)合考試中,備有6道數(shù)學(xué)題,4道語文題,共10道題可選擇,要求學(xué)生從中任意選取5道題作答,答對其中4道或5道即為良好成績,設(shè)隨機變量ξ為所選5道題中語文題的個數(shù).

(1)求隨機變量ξ的分布列及數(shù)學(xué)期望;

(2)若學(xué)生甲隨機選定5道題,且答對任意一道題的概率為0.6,求學(xué)生甲取得良好成績的概率.(精確到小數(shù)點以后兩位)

查看答案和解析>>

甲、乙兩人參加某種選拔測試.在備選的道題中,甲答對其中每道題的概率都是,乙能答對其中的道題.規(guī)定每次考試都從備選的道題中隨機抽出道題進行測試,答對一題加分,答錯一題(不答視為答錯)減分,至少得分才能入選.

(1)求甲得分的數(shù)學(xué)期望;

(2)求甲、乙兩人同時入選的概率.

 

查看答案和解析>>

現(xiàn)有10道題,其中6道甲類題,4道乙類題,張同學(xué)從中任取3道題解答.
(1)求張同學(xué)至少取到1道乙類題的概率;
(2)已知所取的3道題中有2道甲類題,1道乙類題.設(shè)張同學(xué)答對每道甲類題的概率都是,答對每道乙類題的概率都是,且各題答對與否相互獨立.用表示張同學(xué)答對題的個數(shù),求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

現(xiàn)有10道題,其中6道甲類題,4道乙類題,張同學(xué)從中任取3道題解答.
(1)求張同學(xué)至少取到1道乙類題的概率;
(2)已知所取的3道題中有2道甲類題,1道乙類題.設(shè)張同學(xué)答對每道甲類題的概率都是,答對每道乙類題的概率都是,且各題答對與否相互獨立.用表示張同學(xué)答對題的個數(shù),求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

甲、乙兩人參加某種選拔測試.在備選的道題中,甲答對其中每道題的概率都是,乙能答對其中的道題.規(guī)定每次考試都從備選的道題中隨機抽出道題進行測試,答對一題加分,答錯一題(不答視為答錯)減分,至少得分才能入選.
(1)求甲得分的數(shù)學(xué)期望;
(2)求甲、乙兩人同時入選的概率.

查看答案和解析>>

一、

1.B       2.A      3.D      4.D      5.C      6.B       7.A      8.C      9.D      10.A

11.A    12.B

1.由題意知,解得,故選B.

2.原不等式即為,化得,解得.故選A.

3.由條件.對上,所以

,所以.故選D.

4.設(shè)的角為的斜率的斜率,

,于是.故選D.

5.由解得,即其反函數(shù)為,又在原函數(shù)中由,即其反函數(shù)中.故選C.

6.不等式組化得 

       平面區(qū)域如圖所示,陰影部分面積:

       ,故選B.

      

7.由已知得,而

       .故選A.

8..故選c.

9.令,則,即的圖象關(guān)于(0,0)點對稱,將的圖象向下平移6個單位.得題中函數(shù)的圖象,則它的對稱中心為(0,).故選D.

10..故選A.

11.由條件得:,則,所以.故選A.

12.由已知正三棱柱的高為球的直徑,底面正三角形的內(nèi)切圓是球的大圓.設(shè)底面正三角形的邊長為,球半徑為,則,又,解得,則,于是.故選B.

二、

13.平行,,解得

       即

14.設(shè)數(shù)列的公比為,則

       ,兩式相除,得,則

       所以

15.由題意知,直線是拋物線的準(zhǔn)線,而的距離等于到焦點的距離.即求點到點的距離與到點的距離和的最小值,就是點與點的距離,為

16.一方面.由條件,,得,故②正確.

另一方面,如圖,在正方體中,把、分別記作、,平面、平面、平面分別記作、、,就可以否定①與③.

三、

17.解:,且

       ,即

       又

       由正弦定理

       又

      

      

       即的取值范圍是區(qū)間

18.解:(1)設(shè)甲、乙兩人通過測試的事件分別為,則

              、相互獨立,∴甲、乙兩人中只有1人通過測試的概率

             

(2)甲答對題數(shù)的所有可能值為

      

      

    ∴甲答對題數(shù)的數(shù)學(xué)期望為

19.解:(1)由已知,∴數(shù)列的公比,首項

             

             

              又?jǐn)?shù)列中,

              的公差,首項

             

             

             

             

              時也成立)

           ∴數(shù)列、的通項公式依次為

       (2)記

              當(dāng)時,都是增函數(shù)

              即時,是增函數(shù)

              當(dāng)4時,

              又

              ,∴不存在,使

20.(1)證明;在直三棱柱中,

             

              又

             

              ,而,

           ∴平面平面

(2)解:取中點,連接于點,則

與平面所成角的大小等于與平面所成角的大小,取中點,連接、,則等腰三角形中,

又由(1)得

為直線與面所成的角

,

∴直線與平面所成的角為

(注:本題也可以能過建立空間直角坐標(biāo)系解答)

21.解:(1)設(shè)橢圓方程為,雙曲線方程為

              ,半焦距

              由已知得,解得,則

              故橢圓及雙曲線方程分別為

       (2)由向量的數(shù)量積公式知,表示向量夾角的余弦值,設(shè),即求的值.

              由余弦定理得              ①

由橢圓定義得                       ②

由雙曲線定義得                     ③

式②+式③得,式②一式③

將它們代人式①得,解得,

所以

22,解:(1)由

要使在(0,1]上恒為單調(diào)函數(shù),只需在(0,1]上恒成立.

∴只需在(0,1]上恒成立

              記

             

       (2)

           ∴由

       

        化簡得

        時有,即

        則                     ①

              構(gòu)造函數(shù),則

              處取得極大值,也是最大值.

范圍內(nèi)恒成立,而

從而范圍內(nèi)恒成立.

∴在時,

時,,∴當(dāng)時,恒成立

時,總有                                       ②

由式①和式②可知,實數(shù)的取值范圍是

 

 

 


同步練習(xí)冊答案