(1)求數(shù)列和的通項(xiàng)公式, 查看更多

 

題目列表(包括答案和解析)

數(shù)列{an}的通項(xiàng)公式為an=
1
(n+1)2
(n∈N*),設(shè)f(n)=(1-a1)(1-a2)(1-a3)…(1-an).
(1)求f(1)、f(2)、f(3)、f(4)的值;
(2)求f(n)的表達(dá)式;
(3)數(shù)列{bn}滿足b1=1,bn+1=2f(n)-1,它的前n項(xiàng)和為g(n),求證:當(dāng)n∈N*時(shí),g(2n)-
n
2
≥1.

查看答案和解析>>

(18分)已知數(shù)列的通項(xiàng)公式分別為,),將集合
中的元素從小到大依次排列,構(gòu)成數(shù)列
⑴ 求;
⑵ 求證:在數(shù)列中、但不在數(shù)列中的項(xiàng)恰為;
⑶ 求數(shù)列的通項(xiàng)公式。

查看答案和解析>>

(18分)已知數(shù)列的通項(xiàng)公式分別為,),將集合
中的元素從小到大依次排列,構(gòu)成數(shù)列。
⑴求三個(gè)最小的數(shù),使它們既是數(shù)列中的項(xiàng),又是數(shù)列中的項(xiàng);
中有多少項(xiàng)不是數(shù)列中的項(xiàng)?說明理由;
⑶求數(shù)列的前項(xiàng)和)。

查看答案和解析>>

(18分)已知數(shù)列的通項(xiàng)公式分別為,),將集合

中的元素從小到大依次排列,構(gòu)成數(shù)列。

⑴ 求;

⑵ 求證:在數(shù)列中、但不在數(shù)列中的項(xiàng)恰為;

⑶ 求數(shù)列的通項(xiàng)公式。

 

查看答案和解析>>

已知數(shù)列的通項(xiàng)公式分別為,),將集合中的元素從小到大依次排列,構(gòu)成數(shù)列。
⑴求三個(gè)最小的數(shù),使它們既是數(shù)列中的項(xiàng),又是數(shù)列中的項(xiàng);
中有多少項(xiàng)不是數(shù)列中的項(xiàng)?說明理由;
⑶求數(shù)列的前項(xiàng)和)。

查看答案和解析>>

一、

1.B       2.A      3.D      4.A      5.C      6.A      7.D      8.B       9.D      10.A

11.A    12.B

1.由題意知,解得

2.由,化得,解得

3.,又

4.設(shè)的角為的斜率的斜率,

,于是

5.由條件,解,則

6.不等式組化得 

       平面區(qū)域如圖所示,陰影部分面積:

      

7.由已知得,而

       ,則是以3為公比的等比數(shù)列.

8.,于是,而解得

9.函數(shù)可化為,令

       可得其對(duì)稱中心為,當(dāng)時(shí)得對(duì)稱中心為

10.

11.由條件得:,則所以

12.沿球面距離運(yùn)動(dòng)路程最短,最短路程可以選

      

二、填空題

13.

       ,由垂直得.即

       ,解得

14.99

       在等差數(shù)列中,也是等差數(shù)列,由等差中項(xiàng)定理得

       所以

15.

由題意知,直線是拋物線的準(zhǔn)線,而的距離等于到焦點(diǎn)的距離.即求點(diǎn)到點(diǎn)的距離與到點(diǎn)的距離和的最小值,就是點(diǎn)與點(diǎn)的距離,為

16.②

一方面.由條件,,得,故②正確.

另一方面,如圖,在正方體中,把、分別記作、,平面、平面、平面分別記作、,就可以否定①與③.

三、解答題

17.解:,且

       ,即

       又

      

      

       由余弦定理,

       ,故

18.解:(1)只有甲解出的概率:

       (2)只有1人解出的概率:

19.解:(1)由已知,∴數(shù)列的公比,首項(xiàng)

             

             

              又?jǐn)?shù)列中,

           ∴數(shù)列的公差,首項(xiàng)

             

             

             

             

             

           ∴數(shù)列的通項(xiàng)公式依次為

(2),

      

      

      

      

      

20.(1)證明;在直三棱柱中,

             

              又

             

              ,而,

           ∴平面平面

(2)解:取中點(diǎn),連接于點(diǎn),則

與平面所成角大小等于與平面所成角的大。

中點(diǎn),連接、,則等腰三角形中,

又由(1)得

為直線與面所成的角

,

∴直線與平面所成角的正切值為

(注:本題也可以能過建立空間直角坐標(biāo)系解答)

21.解:(1)設(shè)橢圓方程為,雙曲線方程為

              ,半焦距

              由已知得,解得,則

              故橢圓及雙曲線方程分別為

       (2)向量的夾解即是,設(shè),則

              由余弦定理得           ①

        由橢圓定義得                    ②

        由雙曲線定義得                   ③

        式②+式③得,式②式③得

將它們代入式①得,解得,所以向量夾角的余弦值為

22.解(1)由處有極值

                               ①

處的切線的傾斜角為

          ②

由式①、式②解得

設(shè)的方程為

∵原點(diǎn)到直線的距離為,

解得

不過第四象限,

所以切線的方程為

切點(diǎn)坐標(biāo)為(2,3),則,

解得

(2)

      

       上遞增,在上遞減

       而

       在區(qū)間上的最大值是3,最小值是

 


同步練習(xí)冊(cè)答案