題目列表(包括答案和解析)
已知函數(shù)和函數(shù),記.
(1)當(dāng)時,若在上的最大值是,求實(shí)數(shù)的取值范圍;
(2)當(dāng)時,判斷在其定義域內(nèi)是否有極值,并予以證明;
(3)對任意的,若在其定義域內(nèi)既有極大值又有極小值,試求實(shí)數(shù)的取值范圍.
已知函數(shù);
(1)若函數(shù)在其定義域內(nèi)為單調(diào)遞增函數(shù),求實(shí)數(shù)的取值范圍。
(2)若函數(shù),若在[1,e]上至少存在一個x的值使成立,求實(shí)數(shù)的取值范圍。
【解析】第一問中,利用導(dǎo)數(shù),因?yàn)?img src="http://thumb.1010pic.com/pic6/res/gzsx/web/STSource/2012070911301664012899/SYS201207091131067338626240_ST.files/image003.png">在其定義域內(nèi)的單調(diào)遞增函數(shù),所以 內(nèi)滿足恒成立,得到結(jié)論第二問中,在[1,e]上至少存在一個x的值使成立,等價于不等式 在[1,e]上有解,轉(zhuǎn)換為不等式有解來解答即可。
解:(1),
因?yàn)?img src="http://thumb.1010pic.com/pic6/res/gzsx/web/STSource/2012070911301664012899/SYS201207091131067338626240_ST.files/image003.png">在其定義域內(nèi)的單調(diào)遞增函數(shù),
所以 內(nèi)滿足恒成立,即恒成立,
亦即,
即可 又
當(dāng)且僅當(dāng),即x=1時取等號,
在其定義域內(nèi)為單調(diào)增函數(shù)的實(shí)數(shù)k的取值范圍是.
(2)在[1,e]上至少存在一個x的值使成立,等價于不等式 在[1,e]上有解,設(shè)
上的增函數(shù),依題意需
實(shí)數(shù)k的取值范圍是
已知函數(shù)和函數(shù),記.
(1)當(dāng)時,若在上的最大值是,求實(shí)數(shù)的取值范圍;
(2)當(dāng)時,判斷在其定義域內(nèi)是否有極值,并予以證明;
(3)對任意的,若在其定義域內(nèi)既有極大值又有極小值,試求實(shí)數(shù)的取值范圍.
(本小題共12分)
已知函數(shù),
(1)若對于定義域內(nèi)的恒成立,求實(shí)數(shù)的取值范圍;
(2)設(shè)有兩個極值點(diǎn),且,求證:;
(3)設(shè)若對任意的,總存在,使不等式成立,求實(shí)數(shù)的取值范圍.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com