過P作PH⊥面BCC′B′.作PG⊥EF.連接GH.則∠PGH為面AEF與面BCC′B′所成的角.故PGsin∠PGH=PH=PA.則為定值.且.故P點軌跡是橢圓.答案: 查看更多

 

題目列表(包括答案和解析)

如圖,矩形ABCD中,AB=a,AD=b,過點D作DE⊥AC于E,交直線AB于F.現(xiàn)將△ACD沿對角線AC折起到△PAC的位置,使二面角P-AC-B的大小為60°.過P作PH⊥EF于H.
(I)求證:PH⊥平面ABC;
(Ⅱ)若a=
2
b
,求直線DP與平面PBC所成角的大;
(Ⅲ)若a+b=2,求四面體P-ABC體積的最大值.
精英家教網(wǎng)

查看答案和解析>>

如圖所示,矩形ABCD,AB=a,AD=b,過點DDEACE,交直線ABF.現(xiàn)將ACD沿對角線AC折起到PAC的位置,使二面角PACB的大小為60°.PPHEFH.

(1)求證:PH⊥平面ABC;

(2)a+b=2,求四面體PABC體積的最大值.

 

查看答案和解析>>

如圖,在三棱錐P-ABC中,AC=BC=CP=1,且AC⊥BC,PC⊥面ABC,過P作截面分別交AC,BC于E、F,且二面角P-EF-C為60°,則三棱錐P-EFC體積的最小值為
1
9
1
9

查看答案和解析>>

精英家教網(wǎng)在如圖所示的平面直角坐標系中,三角形AOB是腰長為2的等腰直角三角形,動點P與點O位于直線AB的兩側(cè),且∠APB=
34
π

(1)求動點P的軌跡方程;
(2)過點P作PH⊥OA交OA于H,求△OHP得周長的最大值及此時P點得坐標.

查看答案和解析>>

已知橢圓
x2
a2
+
y2
b2
=1
(a>b>0)的左、右頂點分別A、B,橢圓過點(0,1)且離心率e=
3
2

(1)求橢圓的標準方程;
(2)過橢圓上異于A,B兩點的任意一點P作PH⊥x軸,H為垂足,延長HP到點Q,且PQ=HP,過點B作直線l⊥x軸,連結(jié)AQ并延長交直線l于點M,N為MB的中點,試判斷直線QN與以AB為直徑的圓O的位置關(guān)系.

查看答案和解析>>


同步練習(xí)冊答案