答卷前將密封線內(nèi)的項(xiàng)目填寫清楚. 查看更多

 

題目列表(包括答案和解析)

如圖,下面的表格內(nèi)的數(shù)值填寫規(guī)則如下:先將第1行的所有空格填上1;再把一個(gè)首項(xiàng)為1,公比為q的數(shù)列{an}依次填入第一列的空格內(nèi);其它空格按照“任意一格的數(shù)是它上面一格的數(shù)與它左邊一格的數(shù)之和”的規(guī)則填寫.
第1列 第2列 第3列 第n列
第1行 1 1 1 1
第2行 q
第3行 q2
第n行 qn-1
(1)設(shè)第2行的數(shù)依次為b1,b2,…,bn,試用n,q表示b1+b2+…+bn的值;
(2)設(shè)第3列的數(shù)依次為c1,c2,c3,…,cn,求證:對(duì)于任意非零實(shí)數(shù)q,c1+c3>2c2
(3)能否找到q的值,使得(2)中的數(shù)列c1,c2,c3,…,cn的前m項(xiàng)c1,c2,…,cm(m≥3)成為等比數(shù)列?若能找到,m的值有多少個(gè)?若不能找到,說明理由.

查看答案和解析>>

組委會(huì)計(jì)劃對(duì)參加某項(xiàng)田徑比賽的12名運(yùn)動(dòng)員的血樣進(jìn)行突擊檢驗(yàn),檢查是否含有興奮劑HGH成分.采用如下檢測(cè)方法:將所有待檢運(yùn)動(dòng)員分成4個(gè)小組,每組3個(gè)人,再把每個(gè)人的血樣分成兩份,化驗(yàn)室將每個(gè)小組內(nèi)的3個(gè)人的血樣各一份混合在一起進(jìn)行化驗(yàn),若結(jié)果中不含HGH成分,那么該組的3個(gè)人只需化驗(yàn)這一次就算合格;如果結(jié)果中含HGH成分,那么需對(duì)該組進(jìn)行再次檢驗(yàn),即需要把這3個(gè)人的另一份血樣逐個(gè)進(jìn)行化驗(yàn),才能最終確定是否檢驗(yàn)合格,這時(shí),對(duì)這3個(gè)人一共進(jìn)行了4次化驗(yàn),假定對(duì)所有人來說,化驗(yàn)結(jié)果中含有HGH成分的概率均為
110

(Ⅰ)求一個(gè)小組只需經(jīng)過一次檢驗(yàn)就合格的概率;
(Ⅱ)設(shè)一個(gè)小組檢驗(yàn)次數(shù)為隨機(jī)變量ξ,求ξ的分布列及數(shù)學(xué)期望;
(Ⅲ)至少有兩個(gè)小組只需經(jīng)過一次檢驗(yàn)就合格的概率.(精確到0.01,參考數(shù)據(jù):0.2713≈0.020,0.2714≈0.005,0.7292≈0.500)

查看答案和解析>>

如圖是將二進(jìn)制數(shù)11111(2)化為十進(jìn)制數(shù)的一個(gè)程序框圖.
(1)將判斷框內(nèi)的條件補(bǔ)充完整;
(2)請(qǐng)用直到型循環(huán)結(jié)構(gòu)改寫流程圖.

查看答案和解析>>

(2008•成都二模)(新華網(wǎng))反興奮劑的大敵、服藥者的寵兒--HGH(人體生長(zhǎng)激素),有望在8月的北京奧運(yùn)會(huì)上首次“伏法”.據(jù)悉,國(guó)際體育界研究近10年仍不見顯著成效的HGH檢測(cè),日前已取得新的進(jìn)展,新生產(chǎn)的檢測(cè)設(shè)備有希望在北京奧運(yùn)會(huì)上使用.若組委會(huì)計(jì)劃對(duì)參加某項(xiàng)田徑比賽的120名運(yùn)動(dòng)員的血樣進(jìn)行突擊檢查,采用如下化驗(yàn)
方法:將所有待檢運(yùn)動(dòng)員分成若干小組,每組m個(gè)人,再把每個(gè)人的血樣分成兩份,化驗(yàn)時(shí)將每個(gè)小組內(nèi)的m個(gè)人的血樣各一份混合在一起進(jìn)行化驗(yàn),若結(jié)果中不含HGH成分,那么該組的m個(gè)人只需化驗(yàn)這一次就算檢驗(yàn)合格;如果結(jié)果中含有HGH成分,那么需要對(duì)該組進(jìn)行再次檢驗(yàn),即需要把這m個(gè)人的另一份血樣逐個(gè)進(jìn)行化驗(yàn),才能最終確定是否檢驗(yàn)合格,這時(shí),對(duì)這m個(gè)人一共需要進(jìn)行m+1次化驗(yàn).假定對(duì)所有人來說,化驗(yàn)結(jié)果中含有HGH成分的概率均為
110
.當(dāng)m=3時(shí),
(1)求一個(gè)小組只需經(jīng)過一次檢驗(yàn)就合格的概率;
(2)設(shè)一個(gè)小組的檢驗(yàn)次數(shù)為隨機(jī)變量ξ,求ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

(新華網(wǎng))反興奮劑的大敵、服藥者的寵兒——HGH(人體生長(zhǎng)激素),有望在2008年8月的北京奧運(yùn)會(huì)上首次“伏法”。據(jù)悉,國(guó)際體育界研究近10年仍不見顯著成效的HGH檢測(cè),日前已取得新的進(jìn)展,新生產(chǎn)的檢測(cè)設(shè)備有希望在北京奧運(yùn)會(huì)上使用.若組委會(huì)計(jì)劃對(duì)參加某項(xiàng)比賽的12名運(yùn)動(dòng)員的血樣進(jìn)行突擊檢查,采用如下化驗(yàn)方法:將所有待檢運(yùn)動(dòng)員分成若干小組,每組m個(gè)人,再把每個(gè)人的血樣分成兩份,化驗(yàn)時(shí)將每個(gè)小組內(nèi)的m個(gè)人的血樣各一份混合在一起進(jìn)行化驗(yàn),若結(jié)果中不含HGH成分,那么該組的m個(gè)人只需化驗(yàn)這一次就算檢驗(yàn)合格;如果結(jié)果中含有HGH成分,那么需要對(duì)該組進(jìn)行再次檢驗(yàn),即需要把這m個(gè)人的另一份血樣逐個(gè)進(jìn)行化驗(yàn),才能最終確定是否檢驗(yàn)合格,這時(shí),對(duì)這m個(gè)人一共需要進(jìn)行m+1次化驗(yàn).假定對(duì)所有人來說,化驗(yàn)結(jié)果中含有HGH成分的概率均為 .當(dāng)m=3時(shí),求:

(1)一個(gè)小組只需經(jīng)過一次檢驗(yàn)就合格的概率;

(2)至少有兩個(gè)小組只需經(jīng)過一次檢驗(yàn)就合格的概率(精確到0.01.參考數(shù)據(jù):0.2713≈0.020,0.2714≈0.005,0.7292≈0.500)

查看答案和解析>>

一、AADCB  DCACB  DA

二、(13)160;(14)6π;(15)8;(16)①②③

三、(17)解:(Ⅰ)f(x)=(sinx+cosx)2=[sin(x+]2=[g(x)]2

   由f(x)=g(x),得g(x)=0,或g(x)=1

   ∴sin(x+)=0,或sin(x+)=1……………………………………………3分

   ∵-

   ∴x+=0,或x+=,或x+=

   x=-x=0或x=

   所求x值的集合為{-,0,} …………………………………………………7分

   (Ⅱ)由(Ⅰ)知,

   解不等式2kπ+x+≤2kπ+,k∈Z,得

   2kπ+x≤2kπ+…………………………………………………………9分

   ∵-≤x≤且x≠-,

   ∴≤x≤

   ∴函數(shù)的單調(diào)遞減區(qū)間為[]………………………………………12分

18.解:依題意,ξ的可能值為-6000,3000,12000,5000,14000,16000,…2分

  P(ξ=-6000)=0.052=0025,

  P(ξ=3000)=2×0.2×0.05=0.02,

  P(ξ=12000)=0.22=0.4,

  P(ξ=5000)=2×0.75×0.05×=0.075,

  P(ξ=14000)= 2×0.75×0.2×=0.3,

  P(ξ=16000)=0.0752=0.5625…………………………………………………………8分

  ξ的分布列為

ξ

-6000

3000

12000

5000

14000

16000

P

0.0025

0.02

0.04

0.075

0.3

0.5625

……………………………………………………………………………………………10分

ξ的期望為

  Eξ=-6000×0.0025+3000×0.02+12000×0.04+5000×0.075+14000×0.3+16000×0.5625=14100(元)        ………………………………………………………12分

19.解法一:(Ⅰ)∵PO⊥平面ABCD,∴ODPD在平面ABCD內(nèi)的射影

  又ABCD為菱形,∴ACOD,∴ACPD,即PDAC

  在菱形ABCD中,∵∠DAB=60°,

  分∴OD=AO?cot60°=1

  在RtPOD中,PD=,由PEED=3:1,得

  DE=又∠PDO=60°,

 ∴OE2=OD2+DE2-2OD?DEcos60°=

OE2+DE2=OD2,∴∠OED=90°,即PDOE

 PD⊥平面EAC…………………………………………………………………………4分

(Ⅱ)由(Ⅰ)知PDEA,PDEC,則∠AEC為二面角A-PD-C的平面角tan∠AEO=,易知OEAC的垂直平分線,所以∠AEC=2∠AEO,

∴cos∠AEC=cos2AEO-sin2AEO

=………………………………………8分

(Ⅲ)由OBD中點(diǎn),知點(diǎn)B到平面PDC的距離等于點(diǎn)O到平面PDC距離的2倍,由(Ⅰ)知,平面OEC⊥平面PDC,作OHCE,垂足為H,則OH⊥平面PDC,在RtOEC中,∠EOC=90°,OC=

  ∴OH=

  所以點(diǎn)B到平面PDC的距離為……………………………………………12分

 

 

 

 

 

 

 

 

 解法二:建 立如圖所示的坐標(biāo)系O-xyz,其中A(0,-,0),B(1,0,0),C(0,,0),D(-1,0,0),P(0,0,).

(Ⅰ)由PEED=3:1,知E(-)

PDOE,PDAC,∴PD⊥平面EAC……………………………………………4分

(Ⅱ)由(Ⅰ)知PDEA,PDEC,則∠AEC為二面角A-PD-C的平面角

∴cos∠AEC=cos<……………………………………………8分

(Ⅲ)由OBD中點(diǎn)知,點(diǎn)B到平面PDC的距離為點(diǎn)O到平面PDC距離的2倍,又,cos∠OED=cos<

所以點(diǎn)B到平面PDC的距離為

d=2………………………………………………12分

20.解:(Ⅰ)x-f1(x)=0,即x-,解得x1=0,x2=1,x3=-1.

 所以,函數(shù)f1(x)的不動(dòng)點(diǎn)為0,1,-1. ………………………………………………4分

(Ⅱ)令g(x)=x-f2(x)=x-logax(x>0),則g(x)=1-…………6分

(1)若0<a<1,則logae<0,g(x)>0,則g(x)在(0,+∞)內(nèi)單調(diào)遞增.

g(a)=a-1<0,g(1)=1>0,所以g(x)=0即x-f2(x)=0在(0,1)內(nèi)有一根. ………………8分

(2)若a>1,則當(dāng)x∈(0,logae)時(shí),g′<0,g(x)單調(diào)遞減,當(dāng)x∈(logae,+∞)時(shí),g(x)<0,g(x)單調(diào)遞增;當(dāng)x=logae時(shí),g(x)有最小值logae-loga(logae).

g(1)=1>0知,當(dāng)且僅當(dāng)logae-loga(logae)≤0時(shí),g(x)=0即x-f2(x)=0有實(shí)根.

a>1,知logae-loga(logae)≤0   …………………11分

綜合所述,a的取值范圍是(0,1)∪(1,e).   …………………………………………12分

21.解:由已知,F(),雙曲線的漸近線yx的方向向量為v=(1,±1),當(dāng)l斜率k不存在時(shí),不失一般性,取A(,-1)、B(,-1)、B(,1),則v上的投影的絕對(duì)值為,不合題意   ………………………………………………2分

  所以l的斜率k存在,其方程為y=k(x-).

  由得(k2-1)x2-2k2x+2k2+1=0(k2≠1)

 設(shè)A(x1,k(x1-))、B(x2,k(x2-)),則x1+x2=     ………………6分

當(dāng)v=(1,1)時(shí),設(shè)v的夾角為θ,則=(x2-x1,k(x2-x1))在v上投影的絕對(duì)值

=

=

,得2k2-5k+2=0,k=2或k=.

根據(jù)雙曲線的對(duì)稱性知,當(dāng)v=(1,-1)時(shí),k=-2或k=.

       所以直線l的方程為y=±2(x-)或y.…………………12分

22.解:(Ⅰ)(i)an=1-1+1-…+(-1)n-1=.………………………………3分

  (ii)用數(shù)學(xué)歸納法證明:

  (1)當(dāng)n=1時(shí),由f1(x)=1+x,知b1=0,而=0,等式成立. ……4分

  (2)假設(shè)當(dāng)n=k時(shí)等式成立,即bk= -,

  那么由fk+1(x)=fk(x)[1+(-1)(k+1)-1x]=fk(x)[1+(-1)kx],得

  bk+1=bk+(-1)kak=-

  =

  =-

  等式仍然成立. …………………………………………………………………8分

  根據(jù)(1)和(2)知,對(duì)任意n∈N*,都有bn=-……………………9分

  (Ⅱ)cn=1-2+22+…+(-2)n-1=……………………………11分

  由g1(x)=1-x,知d1=0,

  當(dāng)n≥2時(shí),由gn(x)=gn-1(x)[1+(-2)n-1x],知dn=dn-1+(-2)n-1cn-1,

  ∴dn-dn-1=(-2)n-1cn-1=(-2)n-1?.

  ∴dn=d1+(d2-d1)+(d3-d2)+…+(-2)(dn-dn-1)

=0+

=

=

=

當(dāng)n=1時(shí)上式也成立.

dn=……………………………………………………14分

 

 


同步練習(xí)冊(cè)答案