題目列表(包括答案和解析)
A、3×10-4 | B、3×10-5 | C、3×10-6 | D、3×10-7 |
A.3×10-4 | B.3×10-5 | C.3×10-6 | D.3×10-7 |
一、選擇題:(本大題12個(gè)小題,每小題5分,共60分)
1.B.2.B.3.C.4.A.5.A.6.D.7.C.8.B.9.B.10.C.11.D.12.D.
二、填空題:(本大題4個(gè)小題,每小題4分,共16分)
13.; 14.(-∞,-1]∪[3,+∞)∪{0}; 15.1,-1,2,-2; 16.
三、解答題:(本大題6個(gè)小題,共74分)
17.(12分)
解:(Ⅰ)∵()2=?+?+?,∴ ()2=?(+)+? ,
即()2=?+?,即?=0.∴△ABC 是以C為直角頂點(diǎn)的直角三角形.
∴sinA+sinB=sinA+cosA=sin(A+),A∈(0,) ,
∴sinA+sinB的取值范圍為.
(Ⅱ)在直角△ABC中, a=csinA,b=ccosA.
若a2(b+c)+b2(c+a)+c2(a+b)≥kabc,對任意的滿足題意的a、b、c都成立,
則有≥k,對任意的滿足題意的a、b、c都成立,
∵
=[c2sin
=[ sin2AcosA+cos
令t=sinA+cosA,t∈,
設(shè)f(t)==t+=t+=t-1++1.
f(t)=t-1++1,當(dāng)t-1∈時(shí) f(t)為單調(diào)遞減函數(shù),
∴當(dāng)t=時(shí)取得最小值,最小值為2+3,即k≤2+3.
∴k的取值范圍為(-∞,2+3].
命題意圖:本題是平面向量與三角函數(shù)相結(jié)合的問題,運(yùn)用平面向量的運(yùn)算的意義轉(zhuǎn)化為三角函數(shù)的邊角關(guān)系,進(jìn)而運(yùn)用三角函數(shù)的圖象與性質(zhì)求值域.第Ⅱ小題將不等式恒成立的問題轉(zhuǎn)化為求三角函數(shù)的最值,其中運(yùn)用了換元法.
18.(12分)
解:(Ⅰ)一次摸獎(jiǎng)從個(gè)球中任選兩個(gè),有種,它們等可能,其中兩球不同色有種,一次摸獎(jiǎng)中獎(jiǎng)的概率.
(Ⅱ)若,一次摸獎(jiǎng)中獎(jiǎng)的概率,三次摸獎(jiǎng)是獨(dú)立重復(fù)試驗(yàn),三次摸獎(jiǎng)(每次摸獎(jiǎng)后放回)恰有一次中獎(jiǎng)的概率是.
(Ⅲ)設(shè)每次摸獎(jiǎng)中獎(jiǎng)的概率為,則三次摸獎(jiǎng)(每次摸獎(jiǎng)后放回)恰有一次中獎(jiǎng)的概率為,,
,知在上為增函數(shù),在上為減函數(shù),當(dāng)時(shí)取得最大值.又,解得.
答:當(dāng)時(shí),三次摸獎(jiǎng)(每次摸獎(jiǎng)后放回)恰有一次中獎(jiǎng)的概率最大.
命題意圖:本題是一個(gè)在等可能性事件基礎(chǔ)上的獨(dú)立重復(fù)試驗(yàn)問題,體現(xiàn)了不同概型的綜合.第Ⅲ小題中的函數(shù)是三次函數(shù),運(yùn)用了導(dǎo)數(shù)求三次函數(shù)的最值.如果學(xué)生直接用代替,函數(shù)將比較煩瑣,這時(shí)需要運(yùn)用換元的方法,將看成一個(gè)整體,再求最值.
19.(12分)
(Ⅰ)解:∵f(x)+g(x)=10x ①,∴f(-x)+g(-x)=10-x,∵f(x)為奇函數(shù),g(x)為偶函數(shù),∴f(-x)=-f(x),g(-x)=g(x),∴-f(x)+g(x)=10-x ②,由①,②解得f(x)=(10x-),g(x)=(10x+).
(Ⅱ)由y=(10x-)得,(10x)2-2y×10x-1=0,解得10x=y±,
∵10x>0,∴10x=y+,x=lg(y+),∴f(x)的反函數(shù)為f-1(x)=lg(x+).x∈R.
(Ⅲ)解法一:g(x1)+g(x2)=(10+)+(10+)=(10+10)+(+)
≥×2+×2=10+=
解法二:[g(x1)+g(x2)]-
=-=
=≥=0.
(Ⅳ)f(x1-x2)=f(x1)g(x2)-g(x1)f(x2),g(x1+x2)=g(x1)g(x2)-f(x1)f(x2).
命題意圖:考查函數(shù)的函數(shù)解析式,奇函數(shù),單調(diào)性,反函數(shù)等常規(guī)問題的處理方法,第(Ⅲ)問,第(Ⅳ)問把函數(shù)與不等式的證明,函數(shù)與指對式的化簡變形結(jié)合起來,考查學(xué)生綜合應(yīng)用知識(shí)的能力.
20.(12分)
解:設(shè)進(jìn)水量選第x級,則t小時(shí)后水塔中水的剩余量為:
y=100+10xt-10t-100,且0≤t≤16.
根據(jù)題意0<y≤300,∴0<100+10xt-10t-100≤300.?
當(dāng)t=0時(shí),結(jié)論成立.
當(dāng)t>0時(shí),由左邊得x>1+10()
令m=,由0<t≤16,m ≥,
記f(t)=1+10()=1+
則f¢(t)=
∵當(dāng)≤m <時(shí),f¢(t)>0;當(dāng)m >時(shí),f¢(t)<0,
∴所以m =時(shí)(此時(shí)t =),f(t)最大值=1+10()2-10()3=≈2.48.
當(dāng)t=時(shí),1+10()有最大值2.48.∴x>2.48,即x≥3.
由右邊得x≤+1,
當(dāng)t=16時(shí),+1有最小值+1=∈(3,4).即x≤3.
21.(12分)
(Ⅰ)解:設(shè)N(x0,y0),(x0>0),則直線ON方程為y=x,與直線x=-p交于點(diǎn)M(-p,-),代入=得,=,
或=.
化簡得(p2-1)x02+p2y02=p2-1.
把x0,y0換成x,y得點(diǎn)N的軌跡方程為(p2-1)x2+p2y2=p2-1.(x>0)
(1)當(dāng)0<p<1時(shí),方程化為x2-=1表示焦點(diǎn)在x軸上的雙曲線的右支;
(2)當(dāng)p=1時(shí),方程化為y=0,表示一條射線(不含端點(diǎn));
(3)當(dāng)p>1時(shí),方程化為x2+=1表示焦點(diǎn)在x軸上的橢圓的右半部分.
(Ⅱ)解:由(Ⅰ)可知|AN|==
==x0+1.
當(dāng)0<p<1時(shí),因x0∈[1,+∞),故|AN|無最大值,不合題意.
當(dāng)p=1,因x0∈(0,+∞),故|AN|無最大值,不合題意.
當(dāng)p>1時(shí),x0∈(0,1],故當(dāng)x0=1時(shí),|AN|有最大值+1,由題意得+1≤,
解得p≥2.所以p的取值范圍為[2,+∞).
命題意圖:通過用設(shè)點(diǎn),代換,化簡,檢驗(yàn)等步驟求曲線方程,考查解析幾何中已知曲線求方程的能力,并結(jié)合含參數(shù)的方程表示的曲線類型的討論考查學(xué)生的分類討論思想的應(yīng)用.
22.(14分)
解:(Ⅰ)∵ ,a,N*,
∴ ∴ ∴
∴ ∴ a=2或a=3.
∵當(dāng)a=3時(shí),由得,即,與矛盾,故a=3不合題意.
∴a=3舍去, ∴a=2.
(Ⅱ),,由可得.
∴.∴ 是5的約數(shù),又,∴ b=5 .
(Ⅲ)若甲正確,則存在()使,即對N*恒成立,
當(dāng)時(shí),,無解,所以甲所說不正確.
若乙正確,則存在()使,即對N*恒成立,
當(dāng)時(shí),,只有在時(shí)成立,
而當(dāng)時(shí)不成立,所以乙所說也不成立.
命題意圖:本題首先考查等差數(shù)列、等比數(shù)列的基本量、通項(xiàng),結(jié)合含兩個(gè)變量的不等式的處理問題,用兩邊夾的方法確定整數(shù)參數(shù).第Ⅲ小題對數(shù)學(xué)思維的要求比較高,要求學(xué)生理解“存在”、“恒成立”,以及運(yùn)用一般與特殊的關(guān)系進(jìn)行否定,本題有一定的探索性.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com