2數(shù)的大小關(guān)系是 查看更多

 

題目列表(包括答案和解析)

 實(shí)系數(shù)的關(guān)于x的方程x2+ax+2b=0一根大于0且小于1,另一根大于1且小于2,則的取值范圍是                         

 

查看答案和解析>>

(本小題滿分12分)   圖1是某種稱為“凹槽”的機(jī)械部件的示意圖,圖2是凹槽的橫截面(陰影部分)示意圖,其中四邊形ABCD是矩形,弧CmD是半圓,凹槽的橫截面的周長為4.已知凹槽的強(qiáng)度與橫截面的面積成正比,比例系數(shù)為,設(shè)AB=2x,BC=y.(Ⅰ)寫出y關(guān)于x函數(shù)表達(dá)式,并指出x的取值范圍;(Ⅱ)求當(dāng)x取何值時,凹槽的強(qiáng)度最大.

                                                                                                            

 

查看答案和解析>>

(本小題滿分12分)

圖1是某種稱為“凹槽”的機(jī)械部件的示意圖,圖2是凹槽的橫截面(陰影部分)示意圖,其中四邊形ABCD是矩形,弧CmD是半圓,凹槽的橫截面的周長為4.已知凹槽的強(qiáng)度與橫截面的面積成正比,比例系數(shù)為,設(shè)AB=2x,BC=y.

(1)寫出y關(guān)于x函數(shù)表達(dá)式,并指出x的取值范圍;

(2)求當(dāng)x取何值時,凹槽的強(qiáng)度最大.

 

查看答案和解析>>

已知函數(shù)的圖象過坐標(biāo)原點(diǎn)O,且在點(diǎn)處的切線的斜率是.

(Ⅰ)求實(shí)數(shù)的值; 

(Ⅱ)求在區(qū)間上的最大值;

(Ⅲ)對任意給定的正實(shí)數(shù),曲線上是否存在兩點(diǎn)P、Q,使得是以O(shè)為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在軸上?說明理由.

【解析】第一問當(dāng)時,,則

依題意得:,即    解得

第二問當(dāng)時,,令,結(jié)合導(dǎo)數(shù)和函數(shù)之間的關(guān)系得到單調(diào)性的判定,得到極值和最值

第三問假設(shè)曲線上存在兩點(diǎn)P、Q滿足題設(shè)要求,則點(diǎn)P、Q只能在軸兩側(cè)。

不妨設(shè),則,顯然

是以O(shè)為直角頂點(diǎn)的直角三角形,∴

    (*)若方程(*)有解,存在滿足題設(shè)要求的兩點(diǎn)P、Q;

若方程(*)無解,不存在滿足題設(shè)要求的兩點(diǎn)P、Q.

(Ⅰ)當(dāng)時,,則。

依題意得:,即    解得

(Ⅱ)由(Ⅰ)知,

①當(dāng)時,,令

當(dāng)變化時,的變化情況如下表:

0

0

+

0

單調(diào)遞減

極小值

單調(diào)遞增

極大值

單調(diào)遞減

,,!上的最大值為2.

②當(dāng)時, .當(dāng)時, ,最大值為0;

當(dāng)時, 上單調(diào)遞增!最大值為。

綜上,當(dāng)時,即時,在區(qū)間上的最大值為2;

當(dāng)時,即時,在區(qū)間上的最大值為

(Ⅲ)假設(shè)曲線上存在兩點(diǎn)P、Q滿足題設(shè)要求,則點(diǎn)P、Q只能在軸兩側(cè)。

不妨設(shè),則,顯然

是以O(shè)為直角頂點(diǎn)的直角三角形,∴

    (*)若方程(*)有解,存在滿足題設(shè)要求的兩點(diǎn)P、Q;

若方程(*)無解,不存在滿足題設(shè)要求的兩點(diǎn)P、Q.

,則代入(*)式得:

,而此方程無解,因此。此時

代入(*)式得:    即   (**)

 ,則

上單調(diào)遞增,  ∵     ∴,∴的取值范圍是。

∴對于,方程(**)總有解,即方程(*)總有解。

因此,對任意給定的正實(shí)數(shù),曲線上存在兩點(diǎn)P、Q,使得是以O(shè)為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在軸上

 

查看答案和解析>>

(本小題滿分12分)
圖1是某種稱為“凹槽”的機(jī)械部件的示意圖,圖2是凹槽的橫截面(陰影部分)示意圖,其中四邊形ABCD是矩形,弧CmD是半圓,凹槽的橫截面的周長為4.已知凹槽的強(qiáng)度與橫截面的面積成正比,比例系數(shù)為,設(shè)AB=2x,BC=y.

(1)寫出y關(guān)于x函數(shù)表達(dá)式,并指出x的取值范圍;
(2)求當(dāng)x取何值時,凹槽的強(qiáng)度最大.

查看答案和解析>>

一、選擇題:(本大題12個小題,每小題5分,共60分)

CDAB,DABC,CBDA

二、填空題:(本大題4個小題,每小題4分,共16分)

13.0;    14.3;    15.3;     16.10

三、解答題:(本大題6個小題,共74分)

17.(12分)

解:(Ⅰ)由已知等式得:…………(2分)

 ………………(5分)

………………………………………………………………(6分)

(Ⅱ)……………………………………(8分)

……………………(11分)

………………………………………………………………(12分)

18.(12分)

解:由

………………………………(2分)

①當(dāng)時,;……………………………(6分)

②當(dāng)時,;…………………………………………(8分)

③當(dāng)時,!11分)

綜上,當(dāng)時,;

當(dāng)時,;

當(dāng)時,!12分)

19.(12分)

解:(Ⅰ)

………………………………(7分)

(Ⅱ)

………………………(12分)

20.(12分)

解:設(shè)商場分配給超市部、服裝部、家電部的營業(yè)額依次為萬元,萬元,萬元(均為正整數(shù)),由題意得:

………………………………(5分)

由(1),(2)得………………………………(7分)

………………………………(8分)

………………………………(9分)

………………(11分)

答:分配給超市部、服裝部、家電部的營業(yè)額分別為12萬元,22萬元,21萬元,售貨員人數(shù)分別為48人,110人,42人;或者分配給三部門的營業(yè)額依次為15萬元,20萬元,20萬元,售貨員人數(shù)分別為60人,100人,40人!12分)

21.(12分)

解:(Ⅰ)設(shè)拋物線頂點(diǎn)為,則拋物線的焦點(diǎn)為,由拋物線的定義可得:

……………………………(6分)

(Ⅱ)不存在!7分)

設(shè)過點(diǎn),斜率為的直線方程為(斜率不存在時,顯然不合題意),………………………………………………………………………………(8分)

…………………………(9分)

………………………………………………………(10分)

假設(shè)在軌跡上存在兩點(diǎn),令的斜率分別為,則

顯然不可能滿足

∴軌跡上不存在滿足的兩點(diǎn)!12分)

22.(14分)

(Ⅰ)解:由,可以化為:

………………………………(1分)

從而…………………………………………………………(3分)

又由已知,得:

 ,  即 

∴數(shù)列是首項(xiàng)為,公差為的等差數(shù)列,…………………………(4分)

……………………(8分)

(Ⅱ)證明:……(9分)

(12分)

(Ⅲ)解:由于,若恒成立

………………………………(14分)

     

 


同步練習(xí)冊答案