16 有 以下幾個命題 查看更多

 

題目列表(包括答案和解析)

12、已知函數(shù)f(x)是定義在R上的函數(shù),如果函數(shù)f(x)在R上的導函數(shù)f′(x)的圖象如圖,則有以下幾個命題:
(1)f(x)的單調(diào)遞減區(qū)間是(-2,0)、(2,+∞),f(x)的單調(diào)遞增區(qū)間是(-∞,-2)、(0,2);
(2)f(x)只在x=-2處取得極大值;
(3)f(x)在x=-2與x=2處取得極大值;
(4)f(x)在x=0處取得極小值.
其中正確命題的個數(shù)為(  )

查看答案和解析>>

已知函數(shù)f(x)是定義在R上的函數(shù),如果函數(shù)f(x)在R上的導函數(shù)f′(x)的圖象如圖,則有以下幾個命題:

(1)f(x)的單調(diào)遞減區(qū)間是(-2,0)、(2,+∞),f(x)的單調(diào)遞增區(qū)間是(-∞,-2)、(0,2);
(2)f(x)只在x=-2處取得極大值;
(3)f(x)在x=-2與x=2處取得極大值;
(4)f(x)在x=0處取得極小值.
其中正確命題的個數(shù)為                                                               (  )

A.1B.2
C.3D.4

查看答案和解析>>

已知函數(shù)f(x)是定義在R上的函數(shù),如果函數(shù)f(x)在R上的導函數(shù)f′(x)的圖象如圖,則有以下幾個命題:

(1)f(x)的單調(diào)遞減區(qū)間是(-2,0)、(2,+∞),f(x)的單調(diào)遞增區(qū)間是(-∞,-2)、(0,2);

(2)f(x)只在x=-2處取得極大值;

(3)f(x)在x=-2與x=2處取得極大值;

(4)f(x)在x=0處取得極小值.

其中正確命題的個數(shù)為                                                               (  )

A.1                                               B.2

C.3                                               D.4

 

查看答案和解析>>

(08年鷹潭市二模理)有以下幾個命題

 ①曲線平移可得曲線;

②直線AB與平面相交于點B,且AB與內(nèi)相交于點C的三條互不重合的直線CD、CE、CF所成的角相等,則AB⊥

③已知橢圓與雙曲線有相同的準線,則動點的軌跡為直線

④若直線在平面內(nèi)的射影依次為一個點和一條直線,且,則;

⑤設A、B為平面上兩個定點,P為動點,若,則動點P的軌跡為圓

其中真命題的序號為               ;(寫出所有真命題的序號) 

查看答案和解析>>

設x1,x2為y=f(x)的定義域內(nèi)的任意兩個變量,有以下幾個命題:
①(x1-x2)[f(x1)-f(x2)]>0;
②(x1-x2)[f(x1)-f(x2)]<0;
f(x1)-f(x2)
x1-x2
>0;
f(x1)-f(x2)
x1-x2
<0.
其中能推出函數(shù)y=f(x)為增函數(shù)的命題為
①③
①③

查看答案和解析>>

一、選擇題:(本大題共10小題,每小題5分,共50分)

  1 B  2 A  3  文C(理C) 4  D  5  文A(理B) 6  文B(理C)   7  文C(理C)   8  文C(理A)   9  文A (理D) 10  文D(理A)

二、填空題:(本大題共6小題,每小題4分,共24分。

11  (文)“若,則” ,(理)

12  (文) ,(理), 

13  (文),(理)-2

14  -2      15            16  ②④

三、解答題:(本大題共6個解答題,滿分76分,)

17  (文)解:以AN所在直線為x軸,AN的中垂

線為y軸建立平面直角坐標系如圖所示,

則A(-4,0),N(4,0),設P(x,y)  

由|PM|:|PN|=,|PM|2=|PA|2 ?|MA|2得:

                             

代入坐標得:        

整理得:                        

                            

所以動點P的軌跡是以點

(理)解:(I)當a=1時  

                            

 或         

                               

(II)原不等式              

 

當且僅當

                    

依題有:10a<10  ∴為所求  

 18  (文)解:

  

   解得        

                   

                            

 

若由方程組解得,可參考給分

(理)解:(Ⅰ)設    (a≠0),則

           ……     ①

          ……    ②

又∵有兩等根

      ∴……  ③

由①②③得                         

又∵

  ∴a<0, 故

                        

    (Ⅱ)

                        

       ∵g(x)無極值

       ∴方程

      

      得                      

19  (文)解:(I)當a=1時  

                            

 或         

                              

(II)原不等式              

 

當且僅當

                   

依題有:10a<10  ∴為所求                       

 

(理)解:以AN所在直線為x軸,AN的中垂

線為y軸建立平面直角坐標系如圖所示,

則A(-4,0),N(4,0),設P(x,y)  

由|PM|:|PN|=,|PM|2=|PA|2 ?|MA|2得:

                              

代入坐標得:        

整理得:                       

                            

所以動點P的軌跡是以點

20  (文)解:(Ⅰ)設    (a≠0),則

           ……     ①

          ……    ②

又∵有兩等根

      ∴……  ③

由①②③得                         

又∵

  ∴a<0, 故

                       

    (Ⅱ)

                        

       ∵g(x)無極值

       ∴方程

      

      得                             

(理)解:(I)設       (1)

     (2)

由(1),(2)解得              

(II)由向量與向量的夾角為

及A+B+C=知A+C=

            

     

由0<A<,得

的取值范圍是                      

 

21   解:(I)由已知得Sn=2an-3n,

Sn+1=2an+1-3(n+1),兩式相減并整理得:an+1=2an+3            

所以3+ an+1=2(3+an),又a1=S1=2a1-3,a1=3可知3+ a1=6,進而可知an+3

所以,故數(shù)列{3+an}是首相為6,公比為2的等比數(shù)列,

所以3+an=6,即an=3()                           

同步練習冊答案