(二)為偶數(shù).則為奇數(shù).則..則.解得:(是正偶數(shù)). ---- 查看更多

 

題目列表(包括答案和解析)

已知二次函數(shù)f(x)=ax2+bx+1和函數(shù),
(1)若f(x)為偶函數(shù),試判斷g(x)的奇偶性;
(2)若方程g(x)=x有兩個不等的實(shí)根x1,x2(x1<x2),則
①函數(shù)f(x)在(-1,1)上是單調(diào)函數(shù)嗎?說明理由;
②若方程f(x)=0的兩實(shí)根為x3,x4(x3<x4),求使x3<x1<x2<x4成立的a的取值范圍。

查看答案和解析>>

(08年大連市一模理) 若在二項式的展開式中任取一項,該項的系數(shù)為奇數(shù)的概率是1,則在二項式的展開式中任取一項,該項的系數(shù)為奇數(shù)的概率是p,為偶數(shù)的概率是q,那么p―q=          。

查看答案和解析>>

(08年岳陽一中二模理)(12分)  一個盒子中裝有6張卡片,上面分別寫著如下6個定義域均為R的函數(shù):

.

(1)現(xiàn)從盒子中任取兩張卡片,將卡片上的函數(shù)相加得到一個新函數(shù),求所得函數(shù)

為奇函數(shù)的概率;

(2)現(xiàn)從盒子中逐一抽取卡片,且每次取出后均不放回,若取到一張記有偶函數(shù)的卡片則停止抽取,否則繼續(xù)進(jìn)行。求抽取次數(shù)的分布列和數(shù)學(xué)期望.

查看答案和解析>>

已知是公差為d的等差數(shù)列,是公比為q的等比數(shù)列

(Ⅰ)若 ,是否存在,有?請說明理由;

(Ⅱ)若(a、q為常數(shù),且aq0)對任意m存在k,有,試求a、q滿足的充要條件;

(Ⅲ)若試確定所有的p,使數(shù)列中存在某個連續(xù)p項的和式數(shù)列中的一項,請證明.

【解析】第一問中,由,整理后,可得、,為整數(shù)不存在,使等式成立。

(2)中當(dāng)時,則

,其中是大于等于的整數(shù)

反之當(dāng)時,其中是大于等于的整數(shù),則

顯然,其中

、滿足的充要條件是,其中是大于等于的整數(shù)

(3)中設(shè)當(dāng)為偶數(shù)時,式左邊為偶數(shù),右邊為奇數(shù),

當(dāng)為偶數(shù)時,式不成立。由式得,整理

當(dāng)時,符合題意。當(dāng),為奇數(shù)時,

結(jié)合二項式定理得到結(jié)論。

解(1)由,整理后,可得、,為整數(shù)不存在、,使等式成立。

(2)當(dāng)時,則,其中是大于等于的整數(shù)反之當(dāng)時,其中是大于等于的整數(shù),則,

顯然,其中

滿足的充要條件是,其中是大于等于的整數(shù)

(3)設(shè)當(dāng)為偶數(shù)時,式左邊為偶數(shù),右邊為奇數(shù),

當(dāng)為偶數(shù)時,式不成立。由式得,整理

當(dāng)時,符合題意。當(dāng),為奇數(shù)時,

   由,得

當(dāng)為奇數(shù)時,此時,一定有使上式一定成立。當(dāng)為奇數(shù)時,命題都成立

 

查看答案和解析>>


同步練習(xí)冊答案