(2)若為楊輝三角第行中所有數(shù)的和.即.為楊輝三角前行中所有數(shù)的和.亦即為數(shù)列的前項(xiàng)和.求的值. 查看更多

 

題目列表(包括答案和解析)

楊輝是中國(guó)南宋末年的一位杰出的數(shù)學(xué)家、數(shù)學(xué)教育家、楊輝三角是楊輝的一大重要研究成果,它的許多性質(zhì)與組合數(shù)的性質(zhì)有關(guān),楊輝三角中蘊(yùn)藏了許多優(yōu)美的規(guī)律.如圖所示是一個(gè)11階楊輝三角:

(1)求第20行中從左到右的第4個(gè)數(shù);
(2)若第n行中從左到右第14與第15個(gè)數(shù)的比為
23
,求n的值;
(3)在第3斜列中,前5個(gè)數(shù)依次為1,3,6,10,15;第4斜列中,第5個(gè)數(shù)為35.顯然,1+3+6+10+15=35.事實(shí)上,一般地有這樣的結(jié)論:第m斜列中(從右上到左下)前k個(gè)數(shù)之和,一定等于第m+1斜列中第k個(gè)數(shù).試用含有m,k(m,k∈N*)的數(shù)學(xué)公式表示上述結(jié)論,并給予證明.

查看答案和解析>>

已知數(shù)列{an}的前n項(xiàng)和為An,且對(duì)任意正整數(shù)n,都滿(mǎn)足:tan-1=An,其中t>1為實(shí)數(shù).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn為楊輝三角第n行中所有數(shù)的和,即bn=Cn+Cn1+…+Cnn,Bn為楊輝三角前n行中所有數(shù)的和,亦即為數(shù)列{bn}的前n項(xiàng)和,求的值.

查看答案和解析>>

已知數(shù)列{an}的前n項(xiàng)和為An,且對(duì)任意正整數(shù)n,都滿(mǎn)足:tan-1=An,其中t>1為實(shí)數(shù).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn為楊輝三角第n行中所有數(shù)的和,即bn=Cn+Cn1+…+Cnn,Bn為楊輝三角前n行中所有數(shù)的和,亦即為數(shù)列{bn}的前n項(xiàng)和,求的值.

查看答案和解析>>

(2009•盧灣區(qū)二模)已知數(shù)列{an}的前n項(xiàng)和為An,且對(duì)任意正整數(shù)n,都滿(mǎn)足:tan-1=An,其中t>1為實(shí)數(shù).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn為楊輝三角第n行中所有數(shù)的和,即bn=Cn0+Cn1+…+Cnn,Bn為楊輝三角前n行中所有數(shù)的和,亦即為數(shù)列{bn}的前n項(xiàng)和,求
lim
n→∞
An
Bn
的值.

查看答案和解析>>

楊輝是中國(guó)南宋末年的一位杰出的數(shù)學(xué)家、數(shù)學(xué)教育家、楊輝三角是楊輝的一大重要研究成果,它的許多性質(zhì)與組合數(shù)的性質(zhì)有關(guān),楊輝三角中蘊(yùn)藏了許多優(yōu)美的規(guī)律.下圖是一個(gè)11階楊輝三角:

(1)求第20行中從左到右的第4個(gè)數(shù);

(2)若第n行中從左到右第14與第15個(gè)數(shù)的比為,求n的值;

(3)若n階(包括0階)楊輝三角的所有數(shù)的和;

(4)在第3斜列中,前5個(gè)數(shù)依次為1,3,6,10,15;第4斜列中,第5個(gè)數(shù)為35.顯然,1+3+6+10+15=35.事實(shí)上,一般地有這樣的結(jié)論:

第m斜列中(從右上到左下)前k個(gè)數(shù)之和,一定等于第m+1斜列中第k個(gè)數(shù).

試用含有m、k(m,k∈N*)的數(shù)學(xué)公式表示上述結(jié)論,并給予證明.

查看答案和解析>>


同步練習(xí)冊(cè)答案