隨機(jī)變量可取的值為 查看更多

 

題目列表(包括答案和解析)

(理)已知隨機(jī)變量ξ服從二項(xiàng)分布,且Eξ=2.4,Dξ=1.44,則二項(xiàng)分布的參數(shù)n,p的值為( 。

查看答案和解析>>

(理)在1,2,3,…,9這9個(gè)自然數(shù)中,任取3個(gè)數(shù).
(1)求這3個(gè)數(shù)中恰有1個(gè)是偶數(shù)的概率;
(2)設(shè)ξ為這3個(gè)數(shù)中兩數(shù)相鄰的組數(shù)(例如:若取出的數(shù)為1,2,3,則有兩組相鄰的數(shù)1,2和2,3,此時(shí)ξ的值是2).求隨機(jī)變量ξ的分布列及其數(shù)學(xué)期望Eξ.
(文)為拉動(dòng)經(jīng)濟(jì)增長,某市決定新建一批重點(diǎn)工程,分別為基礎(chǔ)設(shè)施工程、民生工程和產(chǎn)業(yè)建設(shè)工程三類,這三類工程所含項(xiàng)目的個(gè)數(shù)分別占總數(shù)的
1
2
1
3
、
1
6
.現(xiàn)有3名工人獨(dú)立地從中任選一個(gè)項(xiàng)目參與建設(shè).
(1)他們選擇的項(xiàng)目所屬類別互不相同的概率;
(2)至少有1人選擇的項(xiàng)目屬于民生工程的概率.

查看答案和解析>>

設(shè)A={(x,y)|1≤x≤6,1≤y≤6,x,y∈N*}
(1)求從A中任取一個(gè)元素是(1,2)的概率;
(2)從A中任取一個(gè)元素,求x+y≥10的概率;
(3)[理]設(shè)Y為隨機(jī)變量,Y=x+y,求E(Y).

查看答案和解析>>

16.(2)解(1)當(dāng)a=1,b=-2時(shí),g(x)=f(x)-2,把f(x)圖象向下平移兩個(gè)單位就可得到g(x)圖象,

這時(shí)函數(shù)g(x)只有兩個(gè)零點(diǎn),所以(1)不對(duì)

(2)若a=-1,-2<b<0,則把函數(shù)f(x)作關(guān)于x軸對(duì)稱圖象,然后向下平移不超過2個(gè)單位就可得到g(x)圖象,這時(shí)g(x)有超過2的零點(diǎn)

(3)當(dāng)a<0時(shí), y=af(x)根據(jù)定義可斷定是奇函數(shù),如果b≠0,把奇函數(shù)y=af(x)圖象再向上(或向下)平移后才是y=g(x)=af(x)+b的圖象,那么肯定不會(huì)再關(guān)于原點(diǎn)對(duì)稱了,肯定不是奇函數(shù);當(dāng)b=0時(shí)才是奇函數(shù),所以(3)不對(duì)。所以正確的只有(2)

為了考察高中生學(xué)習(xí)語文與數(shù)學(xué)之間的關(guān)系,在某中學(xué)學(xué)生中隨機(jī)地抽取了610名學(xué)生得到如下列表:

 語文

數(shù)學(xué)

及格

不及格

總計(jì) 

及格

310

142

452

不及格

94

64

158

總計(jì)

404

206

610

 由表中數(shù)據(jù)計(jì)算及的觀測(cè)值問在多大程度上可以認(rèn)為高中生的語文與數(shù)學(xué)成績之間有關(guān)系?為什么?

查看答案和解析>>

(湖南卷理4)設(shè)隨機(jī)變量服從正態(tài)分布,若,則c=(  )

A.1                     B.2                    C.3                           D.4 

查看答案和解析>>


同步練習(xí)冊(cè)答案