解:(I)令.得. 查看更多

 

題目列表(包括答案和解析)

設向量.

(Ⅰ)求

(Ⅱ)若函數,求的最小值、最大值.

【解析】第一問中,利用向量的坐標表示,表示出數量積公式可得

第二問中,因為,即換元法

得到最值。

解:(I)

(II)由(I)得:

.

時,

 

查看答案和解析>>

給出問題:已知滿足,試判定的形狀.某學生的解答如下:

解:(i)由余弦定理可得,

,

,

是直角三角形.

(ii)設外接圓半徑為.由正弦定理可得,原式等價于

,

是等腰三角形.

綜上可知,是等腰直角三角形.

請問:該學生的解答是否正確?若正確,請在下面橫線中寫出解題過程中主要用到的思想方法;若不正確,請在下面橫線中寫出你認為本題正確的結果.           .

 

查看答案和解析>>

中,滿足,邊上的一點.

(Ⅰ)若,求向量與向量夾角的正弦值;

(Ⅱ)若,=m  (m為正常數) 且邊上的三等分點.,求值;

(Ⅲ)若的最小值。

【解析】第一問中,利用向量的數量積設向量與向量的夾角為,則

=,得,又,則為所求

第二問因為,=m所以,

(1)當時,則= 

(2)當時,則=

第三問中,解:設,因為,;

所以于是

從而

運用三角函數求解。

(Ⅰ)解:設向量與向量的夾角為,則

=,得,又,則為所求……………2

(Ⅱ)解:因為=m所以,

(1)當時,則=;-2分

(2)當時,則=;--2分

(Ⅲ)解:設,因為,;

所以于是

從而---2

==

=…………………………………2

,則函數,在遞減,在上遞增,所以從而當時,

 

查看答案和解析>>

小明用下面的方法求出方程的解,請你仿照他的方法求出下面方程的解為         

方程

換元法得新方程

解新方程

檢驗

求原方程的解

t=2

t =2 > 0

所以x=4

 

查看答案和解析>>

已知函數的最小值為0,其中

(Ⅰ)求的值;

(Ⅱ)若對任意的成立,求實數的最小值;

(Ⅲ)證明).

【解析】(1)解: 的定義域為

,得

當x變化時,,的變化情況如下表:

x

-

0

+

極小值

因此,處取得最小值,故由題意,所以

(2)解:當時,取,有,故時不合題意.當時,令,即

,得

①當時,上恒成立。因此上單調遞減.從而對于任意的,總有,即上恒成立,故符合題意.

②當時,,對于,故上單調遞增.因此當取時,,即不成立.

不合題意.

綜上,k的最小值為.

(3)證明:當n=1時,不等式左邊==右邊,所以不等式成立.

時,

                      

                      

在(2)中取,得

從而

所以有

     

     

     

     

      

綜上,,

 

查看答案和解析>>


同步練習冊答案