16.設(shè)m.n是不同的直線.α.β.γ是不同的平面.有以下四個命題 查看更多

 

題目列表(包括答案和解析)

8、設(shè)m、n是不同的直線,α、β、γ是不同的平面,有以下四個命題:①若α∥β,α∥γ,則β∥γ②若α⊥β,m∥α,則m⊥β③若m⊥α,m∥β,則α⊥β④若m∥n,?n?α,則m∥α其中真命題的序號是(  )

查看答案和解析>>

設(shè)m、n是不同的直線,α、β、γ是不同的平面,有以下四個命題:
(1)
α∥β
α∥γ
?β∥γ

(2)
α⊥β
m∥α
?m⊥β

(3)
m⊥α
m∥β
?α⊥β

(4)
m∥n
n?α
?m∥α

其中假命題有
 

查看答案和解析>>

6、設(shè)m、n是不同的直線,α、β、γ是不同的平面,有以下四個命題:
(1)若n∥α,m∥β,α∥β,則n∥m;   (2)若m⊥α,n∥α,則m⊥n
(3)若α⊥γ,β⊥γ,則α∥β;         (4)若α∥β,β∥γ,m⊥α,則m⊥γ
其中真命題的個數(shù)是( 。

查看答案和解析>>

設(shè)m、n是不同的直線,α、β、γ是不同的平面,有以下四個命題:
(1)
α∥β
α∥γ
?β∥γ
;
(2)
α⊥β
m∥α
?m⊥β
;
(3)
m⊥α
m∥β
?α⊥β

(4)
m∥n
n?α
?m∥α

其中,假命題是( 。
A、(1)(2)
B、(2)(3)
C、(1)(3)
D、(2)(4)

查看答案和解析>>

設(shè)m、n是不同的直線,α、β、γ是不同的平面,有以下四個命題:
①若α∥β,α∥γ,則β∥γ         
②若α⊥β,m∥α,則m⊥β
③若m?α,n⊥β,α∥β,則m⊥n   
④若m∥n,n?α,則m∥α
其中真命題的序號是
①③
①③

查看答案和解析>>

一、選擇題:

1.A 2.B 3.C 4.C 5.D 6.A 7.D 8.C 9.D 10.D 11.A 12.B

二、填空題:

13.14   14.2   15.30   16.①③

17. -1    18. -5   19.  -1-    20.     

21. 4    22.6ec8aac122bd4f6e    23.10   24.412    25.①④

三、解答題:

26解:(1),

,有,

解得。                                      

(2)解法一:    

。 

解法二:由(1),,得

   

                                       

于是,

              

代入得。          

27證明:(1)∵

                                        

(2)令中點(diǎn)為,中點(diǎn)為,連結(jié)

的中位線

         

又∵

   

為正

        

又∵,

∴四邊形為平行四邊形   

 

28解:(1)設(shè)米,,則

                                               

                                       

                                           

(2)                 

 

 

 此時                                            

(3)∵

,                         

當(dāng)時,

上遞增                    

此時                                             

答:(1)

(2)當(dāng)的長度是4米時,矩形的面積最小,最小面積為24平方米;

(3)當(dāng)的長度是6米時,矩形的面積最小,最小面積為27平方米。                            

29解:(1)①若直線的斜率不存在,即直線是,符合題意。 

②若直線斜率存在,設(shè)直線,即

由題意知,圓心以已知直線的距離等于半徑2,即:,

解之得                                           

所求直線方程是,                          

(2)解法一:直線與圓相交,斜率必定存在,且不為0,可設(shè)直線方程為

                  

又直線垂直,由

為定值。

是定值,且為6。                          

30解:(1)由題意得,                            

,    ∴   

,∴

單調(diào)增函數(shù),                                         

對于恒成立。    

(3)       方程;  

(4)       ∴ 

 ∵,∴方程為               

 令,

 ∵,當(dāng)時,,

上為增函數(shù);

 時,, 

上為減函數(shù),  

 當(dāng)時,                    

,            

∴函數(shù)、在同一坐標(biāo)系的大致圖象如圖所示,

∴①當(dāng),即時,方程無解。

②當(dāng),即時,方程有一個根。

③當(dāng),即時,方程有兩個根                                                                                                     

 


同步練習(xí)冊答案